搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测

卢一林 董盛杰 崔方超 张开成 刘春梅 李杰森 毛卓

引用本文:
Citation:

碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测

卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓

Theoretical prediction of C- and O-doped Hittorf’s violet phosphorene as bipolar magnetic semiconductor material

Lu Yi-Lin, Dong Sheng-Jie, Cui Fang-Chao, Zhang Kai-Cheng, Liu Chun-Mei, Li Jie-Sen, Mao Zhuo
PDF
HTML
导出引用
  • 紫磷烯是一种结构稳定且具有优异光电特性的新型二维材料, 研究掺杂效应有助于理解其物理本质, 对进一步开发纳米电子器件具有重要意义. 本文采用基于密度泛函理论的第一性原理方法, 研究了非金属元素B, C, N, O掺杂单层紫磷烯的电磁性质. 计算结果表明, B和N掺杂之后没有产生磁性, 体系依旧表现为非磁性半导体; 而C和O掺杂导致体系发生自旋劈裂, 紫磷烯由非磁性半导体转变成为双极磁性半导体, 其自旋密度主要分布在磷原子和间隙区域内而非杂原子上. 电场调控氧掺杂紫磷烯可使其载流子的自旋极化方向发生反转, 当施加一定大小的正向或反向的静电场时, 能带色散程度变强, 氧掺杂紫磷烯转变成100%自旋极化向下或向上的单自旋半金属磁体. 基于氧掺杂紫磷烯材料设计的场效应自旋滤通器可利用改变门电压方向的方法实现电流自旋极化方向的反转, 表明氧掺杂紫磷烯有望成为二维自旋场效应晶体管、双极磁性自旋电子学器件、双通道场效应自旋滤通器以及场效应自旋阀的理想候选材料.
    Hittorf’s violet phosphorene is a novel two-dimensional material with stable structure and excellent optoelectronic properties. Studying the doping effect helps to understand its physical essence and is of great significance in further developing nanoelectronic devices. In this paper, the first-principles method based on density functional theory is used to study the electromagnetic properties of the non-metallic element B-, C-, N-, and O-doped single-layer violet phosphene. The results show that there is no magnetism after having doped boron and nitrogen, and the system still behaves as a nonmagnetic semiconductor, while carbon doping and oxygen doping cause spin splitting, and the violet phosphorene transforms from a nonmagnetic semiconductor to a bipolar magnetic semiconductor, and its spin density is mainly distributed in the P atom and gap region, rather than on the impurity. The direction of spin polarization of its carrier can be reversed by adjusting the electric field of O-doped violet phosphorene. When a certain size of forward or reverse electrostatic field is applied, the band dispersion becomes stronger, and the O-doped violet phosphorene transforms into a half-metallic magnet with 100% downward or upward spin polarization at the Fermi level. The field effect spin filter based on O-doped violet phosphorene can reverse the direction of spin-polarized current by changing the direction of the gate voltage. This study shows that O-doped violet phosphorene is expected to be an ideal candidate material for two-dimensional spin field-effect transistors, bipolar magnetic spintronic devices, dual channel field effect spin filters, and field-effect spin valves.
      通信作者: 卢一林, yilinlu@tju.edu.cn ; 董盛杰, shengjiedong@tju.edu.cn
    • 基金项目: 辽宁省教育厅基本科研项目(批准号: LJKQZ20222272)和渤海大学海洋研究院开放课题(批准号: BDHYYJY2023015)资助的课题.
      Corresponding author: Lu Yi-Lin, yilinlu@tju.edu.cn ; Dong Sheng-Jie, shengjiedong@tju.edu.cn
    • Funds: Project supported by the Scientific Research Fund of the Education Department of Liaoning Province, China (Grant No. LJKQZ20222272) and the Open Project of the Institute of Ocean Research, Bohai University, China. (Grant No. BDHYYJY2023015).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113Google Scholar

    [3]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804Google Scholar

    [4]

    Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A 2012 Adv. Mater. 24 5088Google Scholar

    [5]

    Zhu C, Shao R, Chen S, Cai R, Wu Y, Yao L, Xia W, Nie M, Sun L, Gao P, Xin H L, Xu F 2019 Small Methods 3 1900061Google Scholar

    [6]

    Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, Shi X, Zhang K, Chen W, Chen S 2019 Adv. Mater. 31 1806492Google Scholar

    [7]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401Google Scholar

    [8]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Zhou Q, Chen Q, Tong Y, Wang J 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

    [11]

    Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019 Electrochimica Acta 295 230Google Scholar

    [12]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interf. 7 13723Google Scholar

    [13]

    Schusteritsch G, Uhrin M, Pickard C J 2016 Nano Lett. 16 2975Google Scholar

    [14]

    Lu Y L, Dong S, Zhou W, Dai S, Zhou B, Zhao H, Wu P 2018 Phys. Chem. Chem. Phys. 20 11967Google Scholar

    [15]

    Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J 2020 Angew. Chem. Int. Ed. 132 1090Google Scholar

    [16]

    Zhang B, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [17]

    Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [18]

    Han R, Qi M, Mao Z, Lin X, Wu P 2021 Appl. Surf. Sci. 541 148454Google Scholar

    [19]

    Xue R, Han R, Lin X, Wu P 2023 Appl. Surf. Sci. 608 155240Google Scholar

    [20]

    Lin X, Mao Z, Dong S, Jian X, Han R, Wu P 2021 Physica E 127 114524Google Scholar

    [21]

    Han R, Qi M, Dong S, Mao Z, Lin X, Wu P 2021 Physica E 129 114667Google Scholar

    [22]

    Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [23]

    Baumer F, Ma Y, Shen C, Zhang A, Chen L, Liu Y, Pfister D, Nilges T, Zhou C 2017 ACS Nano 11 4105Google Scholar

    [24]

    Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [25]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [26]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [27]

    Zheng H, Zhang J, Yang B, Du X, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [28]

    Yang L, Mi W, Wang X 2016 J. Alloys Compd. 662 528Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [31]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Lu Y L, Dong S, Zhou W, Liu Y, Zhao H, Wu P 2017 J. Magn. Magn. Mater. 441 799Google Scholar

    [36]

    Safari F, Fathipour M, Goharrizi A Y 2018 J. Comput. Electron. 17 499Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

  • 图 1  不同掺杂位点掺杂单层紫磷烯的几何结构模型. 紫色和红色小球分别表示磷原子和掺杂原子. 标记的1, 2和3分别代表与杂质原子距离最近的3个磷原子P1, P2和P3

    Fig. 1.  Geometric structure of the doped Hittorf’s violet phosphorene with different doping sites. The violet and red spheres represent the phosphorus atoms and the dopant atom, respectively. The marked 1, 2, and 3 denote the sites of three nearest-neighboring P atoms P1, P2, and P3.

    图 2  掺杂体系键长、形成能与掺杂位置的关系图 (a)键长dX-P1; (b)键长dX-P2; (c)键长dX-P3; (d)形成能

    Fig. 2.  Calculated bond length, forming energy of doping system as a function of differential substitutional sites: (a) Bond length dX-P1; (b) bond length dX-P2; (c) bond length dX-P3; (d) formation energy.

    图 3  掺杂体系的能带结构 (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Fig. 3.  Energy band structures of doping system: (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 4  掺杂体系的态密度, 其中每一张图的上半部分和下半部分分别为P原子和X原子的分态密度 (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Fig. 4.  Density of states for doping system, and the graphs above and below indicate the partial density of states for the P atoms and X atom, respectively: (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 5  C掺杂(a)和O掺杂(b)紫磷烯的自旋密度图. 等值面为0.003 e/Å, 上图为侧视图, 下图为俯视图

    Fig. 5.  Spatial spin density for C doping (a) and O doping (b), respectively. Isovalue is set to 0.003 e/Å, and the upper panel is the side view and the down panel is the top view.

    图 6  缺陷引起的杂质能级的电子填充状态的示意图. 实心圆圈和空心圆圈分别表示电子和空穴

    Fig. 6.  Schematic representations of the defect-induced impurity band electronic states. Filled and open circles denote electrons and holes, respectively.

    图 7  各原子掺杂紫磷烯的差分电荷密度图(等值面为0.02 e–3) (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Fig. 7.  Charge density difference for atom doped violet phosphoene (Isovalue is set to 0.02 e–3): (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 8  O掺杂浓度为2.38%时, 掺杂紫磷烯在外加电场下的能带结构

    Fig. 8.  Energy band structures of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 2.38% under different applied external electric fields.

    图 9  O掺杂浓度为1.19%时, 掺杂紫磷烯的能带(a)和态密度(b)

    Fig. 9.  Energy band structures (a) and density of states (b) of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 1.19%.

    图 10  O掺杂浓度为1.19%时, 掺杂紫磷烯在外加电场下的能带结构

    Fig. 10.  Energy band structures of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 1.19% under different applied external electric fields.

    图 11  (a)基于O掺杂紫磷烯材料的场效应自旋滤通器模拟示意图; (b)电场控制下O掺杂紫磷烯的能带结构示意图

    Fig. 11.  (a) Schematic diagram of a field-effect spin filter based on O-doped Hittorf’s violet phosphorene; (b) schematic illustration of the electrical control of the band structure of O-doped Hittorf’s violet phosphorene.

    表 1  非金属原子掺杂单层紫磷烯的总磁矩Mtot, 非金属原子X的局部磁矩MX, 磷原子的局部磁矩MP以及间隙区域的局部磁矩Mint

    Table 1.  Total magnetic moment Mtot, the partial magnetic moment of the dopant MX, the P atoms MP, and the interstitial region Mint, respectively.

    掺杂体系 Mtot/μB MX/μB MP/μB Mint/μB
    B掺杂 0 0 0 0
    C掺杂 0.988 0.262 0.229 0.497
    N掺杂 0 0 0 0
    O掺杂 0.991 0.012 0.471 0.520
    下载: 导出CSV

    表 2  掺杂紫磷烯中X, P1, P2和P3原子的Bader电荷值

    Table 2.  Bader charges of the dopant X, P1, P2, and P3 atoms, respectively.

    掺杂体系 X P1 P2 P3
    B掺杂 2.73 5.11 5.11 5.10
    C掺杂 5.50 4.44 4.55 4.50
    N掺杂 6.81 4.37 4.37 4.35
    O掺杂 7.38 4.26 4.25
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113Google Scholar

    [3]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804Google Scholar

    [4]

    Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A 2012 Adv. Mater. 24 5088Google Scholar

    [5]

    Zhu C, Shao R, Chen S, Cai R, Wu Y, Yao L, Xia W, Nie M, Sun L, Gao P, Xin H L, Xu F 2019 Small Methods 3 1900061Google Scholar

    [6]

    Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, Shi X, Zhang K, Chen W, Chen S 2019 Adv. Mater. 31 1806492Google Scholar

    [7]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401Google Scholar

    [8]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Zhou Q, Chen Q, Tong Y, Wang J 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

    [11]

    Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019 Electrochimica Acta 295 230Google Scholar

    [12]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interf. 7 13723Google Scholar

    [13]

    Schusteritsch G, Uhrin M, Pickard C J 2016 Nano Lett. 16 2975Google Scholar

    [14]

    Lu Y L, Dong S, Zhou W, Dai S, Zhou B, Zhao H, Wu P 2018 Phys. Chem. Chem. Phys. 20 11967Google Scholar

    [15]

    Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J 2020 Angew. Chem. Int. Ed. 132 1090Google Scholar

    [16]

    Zhang B, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [17]

    Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [18]

    Han R, Qi M, Mao Z, Lin X, Wu P 2021 Appl. Surf. Sci. 541 148454Google Scholar

    [19]

    Xue R, Han R, Lin X, Wu P 2023 Appl. Surf. Sci. 608 155240Google Scholar

    [20]

    Lin X, Mao Z, Dong S, Jian X, Han R, Wu P 2021 Physica E 127 114524Google Scholar

    [21]

    Han R, Qi M, Dong S, Mao Z, Lin X, Wu P 2021 Physica E 129 114667Google Scholar

    [22]

    Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [23]

    Baumer F, Ma Y, Shen C, Zhang A, Chen L, Liu Y, Pfister D, Nilges T, Zhou C 2017 ACS Nano 11 4105Google Scholar

    [24]

    Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [25]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [26]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [27]

    Zheng H, Zhang J, Yang B, Du X, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [28]

    Yang L, Mi W, Wang X 2016 J. Alloys Compd. 662 528Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [31]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Lu Y L, Dong S, Zhou W, Liu Y, Zhao H, Wu P 2017 J. Magn. Magn. Mater. 441 799Google Scholar

    [36]

    Safari F, Fathipour M, Goharrizi A Y 2018 J. Comput. Electron. 17 499Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

  • [1] 吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏. 外加电场和B/N掺杂对锡烯带隙的影响研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231935
    [2] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [3] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [5] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [6] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [7] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [8] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [9] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究. 物理学报, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [10] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究. 物理学报, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [11] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [12] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] 汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺. 有机半导体的物理掺杂理论. 物理学报, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [14] 唐利斌, 姬荣斌, 宋立媛, 陈雪梅, 李永亮, 荣百炼, 宋炳文. 有机红外半导体酞菁铒的掺杂及电学性质研究. 物理学报, 2008, 57(11): 7244-7251. doi: 10.7498/aps.57.7244
    [15] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [16] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [17] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [20] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
计量
  • 文章访问数:  782
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2023-09-06
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回