搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导放电等离子体极紫外辐射的模拟

王均武 玄洪文 俞航航 王新兵 Vassily S. Zakharov

引用本文:
Citation:

激光诱导放电等离子体极紫外辐射的模拟

王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov

Simulation of extreme ultraviolet radiation of laser induced discharge plasma

Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov
PDF
HTML
导出引用
  • 极紫外光刻是目前新一代超高集成度半导体芯片制造流程中重要的一环, 激光诱导放电等离子体是极紫外光源产生的重要技术手段之一. 本文基于全局状态方程、原子结构计算程序、碰撞辐射模型建立了一个辐射磁流体力学模型, 对激光诱导放电等离子体的动力学特性及极紫外的辐射特性进行模拟, 模拟复现了放电过程中的箍缩现象, 得到的极紫外光的转化效率与实验符合. 研究发现放电电流的上升速率对极紫外光的产生有极大的影响, 该结果对后续极紫外光输出功率、转化效率以及光谱纯度的提升有重要的指导意义.
    Extreme ultraviolet (EUV) light source is an important part of EUV lithography system in semiconductor manufacturing. The EUV light source requires that the 4p64dn-4p54dn+1 + 4dn–14f transitions of Sn8+~13+ ions emit thousands of lines which form unresolved transition arrays near 13.5 nm. Laser-induced discharge plasma is one of the important technical means to excite target into an appropriate plasma condition. Laser-induced discharge plasma has a simple structure and a low cost. It also has important applications in mask inspection, microscopic imaging, and spectral metrology. In the design and production process, there are many factors that can influence the conversion efficiency, such as current, electrode shape, and laser power density. The simulation method is a convenient way to provide guidance for optimizing the parameters. In this paper, a completed radiation magneto-hydrodynamic model is used to explore the dynamic characteristics of laser-induced discharge plasma and its EUV radiation characteristics. To improve the accuracy, a more detailed global equation of state model, an atomic structure calculation model including relativistic effect and a collision radiation model are proposed simultaneously. The simulation reconstructs the discharge process effectively, which is divided into five stages in the first half cycle of current, including expansion of laser plasma, column formation of discharge plasma, diffusion of discharge plasma, contraction of discharge plasma, and re-diffusion of discharge plasma. It is revealed that the pinch effect during the current rising time exerts a significant influence on the generation of EUV radiation. The conversion efficiency of EUV radiation is still low under our existing conditions, and hopefully a higher rising rate of current can improve the conversion efficiency in the future work.
      通信作者: 玄洪文, xuanhw@aircas.ac.cn
    • 基金项目: 广州市基础与应用基础研究专题(批准号: 2023A04J0024)、中国科学院人才引进计划(批准号: E33310030D)和中国科学院空天信息创新研究院(批准号: E1Z1D101, E2Z2D101)资助的课题.
      Corresponding author: Xuan Hong-Wen, xuanhw@aircas.ac.cn
    • Funds: Project supported by the Basic and Applied Basic Research Project of Guangzhou, China (Grant No. 2023A04J0024), the Talent Introduction Program of Chinese Academy of Sciences, China (Grant No. E33310030D), and the Aerospace Information Innovation Research Institute, Chinese Academy of Sciences, China (Grant Nos. E1Z1D101, E2Z2D101).
    [1]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [2]

    Tallents G, Wagenaars E, Pert G 2010 Nat. Photonics 4 809Google Scholar

    [3]

    Schriever G, Semprez O R, Jonkers J, Yoshioka M, Apetz R 2012 J. Microlithogr. Microfabr. Microsyst. 11 021104Google Scholar

    [4]

    Pankert J, Bergmann K, Klein J, Neff W, Rosier O, Seiwert S, Smith C, Probst S, Vaudrevange D, Siemons G, et al. 2004 Emerging Lithographic Technologies VIII Santa Clara, California, May 20, 2004 p152

    [5]

    Sayan S, Chakravorty K, Teramoto Y, Shirai T, Morimoto S, Watanabe H, Sato Y, Aoki K, Liang T, Tezuka Y, et al. 2021 Extreme Ultraviolet (EUV) Lithography XII San Jose, California, United States, March 23, 2021 p116090L

    [6]

    Teramoto Y, Santos B, et al. 2014 Extreme Ultraviolet (EUV) Lithography V San Jose, California, United States, April 17, 2014 p904813

    [7]

    Sayan S, Chakravorty K, Teramoto Y, Santos B, Nagano A, Ashizawa N, Shirai T, Morimoto S, Watanabe H, Aoki K, Sato Y 2023 Optical and EUV Nanolithography XXXVI San Jose, California, United States, May 26, 2023 pPC124940E

    [8]

    Kruecken T 2007 AIP Conf. Proc. 901 181Google Scholar

    [9]

    Hassanein A, Sizyuk V A, Tolkach V I, Morozov V A, Rice B J 2004 J. Micro/Nanolithgr. MEMS MOEMS 3 130Google Scholar

    [10]

    Hassanein A, Sizyuk V, Sizyuk T 2008 Emerging Lithographic Technologies XII, San Jose, California, United States, March 20, 2008 p692113

    [11]

    Zakharov V S, Juschkin L, Zakharov S V, O’Sullivan G, Sokel E, Tobin I 2012 International Workshop on EUV and Soft X-Ray Sources Dublin, Ireland, October 8–11, 2012 pS26

    [12]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Extreme Ultraviolet (EUV) Lithography San Jose, California, United States, March 22, 2010 p76363D

    [13]

    Masnavi M, Nakajima M, Hotta E, Horioka K, Niimi G, Sasaki A 2007 J. Appl. Phys. 101 033306Google Scholar

    [14]

    Tsygvintsev I P, Krukovskiy A Y, Gasilov V A, Novikov V G, Romanov I V, Paperny V L, Rupasov A A 2016 Mathematical Models and Computer Simulations 8 595Google Scholar

    [15]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O’Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O’Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

    [16]

    吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Ramis R, 王真, 祁建敏, 周林, 梁川 2017 物理学报 66 215201Google Scholar

    Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Wang Z, Qi J M, Zhou L, Liang C 2017 Acta Phys. Sin. 66 215201Google Scholar

    [17]

    陈忠旺, 宁成 2017 物理学报 66 215202Google Scholar

    Cheng Z W, Ning C 2017 Acta Phys. Sin. 66 215202Google Scholar

    [18]

    Zakharov S V, Zakharov V S, Choi P, Krukovskiy A Y, Novikov V G, Solomyannaya A D, Berezin A V, Vorontsov A S, Markov M B, Parot’kin S V 2011 Extreme Ultraviolet (EUV) Lithography II San Jose, California, United States, April 8, 2011 p796932

    [19]

    Zakharov V S 2017 The International Photonics and Optoelectronics Meeting, Wuhan, China, November 3–5, 2017 pASu4A.1

    [20]

    Sasaki A, Sunahara A, Furukawa H, Nishihara K, Nishikawa T, Koike F 2016 J. Phys. Conf. 688 012099Google Scholar

    [21]

    Wang L J, Qian Z H, Huang X L, Jia S L 2013 IEEE T. Plasma Sci. 41 2015Google Scholar

    [22]

    Vovchenko E D, Melekhov A P V 2016 International Conference of Photonics and Information Optics Moscow, Russia, February 3–5, 2016 p012013

    [23]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [24]

    Sasaki A 2013 High Energ. Dens. Phys. 9 325Google Scholar

    [25]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [26]

    段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等离子体物理 31 2Google Scholar

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 2Google Scholar

    [27]

    段耀勇, 郭永辉, 邱爱慈, 吴刚 2010 物理学报 59 5588Google Scholar

    Duan Y Y, Guo Y H, Qiu A C, Wu G 2010 Acta Phys. Sin. 59 5588Google Scholar

    [28]

    Dunning F B, Hulet R G 1997 Atomic, Molecular, and Optical Physics: Charged Particles (San Diego: Academic Press) p169

    [29]

    韩小英, 李凌霄, 戴振生, 郑无敌, 谷培俊, 吴泽清 2021 物理学报 70 115202Google Scholar

    Han X Y, Li L X, Dai Z S, Zheng W D, Gu P J, Wu Z Q 2021 Acta Phys. Sin. 70 115202Google Scholar

    [30]

    Vichev I Y, Solomyannaya A D, Grushin A S, Kim D A 2019 High Energ. Dens. Phys. 33 100713Google Scholar

    [31]

    Gu M F 2004 AIP Conf. Proc. 730 127Google Scholar

    [32]

    Han B, Wang F, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Jpn. 67 29Google Scholar

    [33]

    Zeng J L, Gao C, Yuan J M 2010 Phys. Rev. E 82 026409Google Scholar

    [34]

    王均武, 王新兵, 左都罗 2020 激光技术 44 173Google Scholar

    Wang J W, Wang X B, Zuo D L 2020 Laser Technology 44 173Google Scholar

    [35]

    Xie Z, Wu J, Dou Y P, Lin J Q, Tomie T 2019 AIP Adv. 9 085029Google Scholar

    [36]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Chin. Phys. B 30 095207Google Scholar

  • 图 1  激光诱导放电等离子体及其极紫外辐射磁流体模拟流程图

    Fig. 1.  Flow chart of radiative magneto-hydrodynamic simulation of LDP and its EUV radiation.

    图 2  电子密度为1020 cm–3时, 不同电子温度条件下锡的离子组分以及平均电离度

    Fig. 2.  Charge state distributions, average ionization degrees of tin plasma at different electron temperatures when ne = 1020 cm–3.

    图 3  电子温度为20 eV时, 不同电子密度下锡离子的电离态分布以及平均电离度

    Fig. 3.  Charge state distributions, average ionization degrees of tin plasma at different electron densities when Te = 20 eV.

    图 4  激光诱导放电模拟过程中电流波形

    Fig. 4.  Simulation of current waveform during laser induced discharge.

    图 5  放电过程中等离子密度模拟 (a) 320 ns; (b) 480 ns; (c) 720 ns; (d) 960 ns; (e) 1200 ns; (f) 1840 ns; (g) 2400 ns; (h) 2700 ns

    Fig. 5.  Simulation of plasma density during discharge: (a) 320 ns; (b) 480 ns; (c) 720 ns; (d) 960 ns; (e) 1200 ns; (f) 1840 ns; (g) 2400 ns; (h) 2700 ns.

    图 6  放电过程中极紫外辐射功率密度模拟 (a) 480 ns; (b) 704 ns; (c) 382 ns; (d) 1008 ns; (e) 1152 ns; (f) 1328 ns; (g) 1504 ns; (h) 1712 ns

    Fig. 6.  Simulation of EUV radiation power during discharge: (a) 480 ns; (b) 704 ns; (c) 382 ns; (d) 1008 ns; (e) 1152 ns; (f) 1328 ns; (g) 1504 ns; (h) 1712 ns.

    图 7  放电等离子体羽辉图像[34] (a) 300 ns; (b) 450 ns; (c) 600 ns; (d) 750 ns; (e) 900 ns; (f) 1050 ns; (g) 1200 ns; (h) 1350 ns; (i) 1500 ns

    Fig. 7.  Discharge plasma plume images[34]: (a) 300 ns; (b) 450 ns; (c) 600 ns; (d) 750 ns; (e) 900 ns; (f) 1050 ns; (g) 1200 ns; (h) 1350 ns; (i) 1500 ns.

    图 8  放电过程中光辐射总功率及极紫外辐射功率时域波形

    Fig. 8.  Waveforms of total optical radiation power and EUV power during discharge.

  • [1]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [2]

    Tallents G, Wagenaars E, Pert G 2010 Nat. Photonics 4 809Google Scholar

    [3]

    Schriever G, Semprez O R, Jonkers J, Yoshioka M, Apetz R 2012 J. Microlithogr. Microfabr. Microsyst. 11 021104Google Scholar

    [4]

    Pankert J, Bergmann K, Klein J, Neff W, Rosier O, Seiwert S, Smith C, Probst S, Vaudrevange D, Siemons G, et al. 2004 Emerging Lithographic Technologies VIII Santa Clara, California, May 20, 2004 p152

    [5]

    Sayan S, Chakravorty K, Teramoto Y, Shirai T, Morimoto S, Watanabe H, Sato Y, Aoki K, Liang T, Tezuka Y, et al. 2021 Extreme Ultraviolet (EUV) Lithography XII San Jose, California, United States, March 23, 2021 p116090L

    [6]

    Teramoto Y, Santos B, et al. 2014 Extreme Ultraviolet (EUV) Lithography V San Jose, California, United States, April 17, 2014 p904813

    [7]

    Sayan S, Chakravorty K, Teramoto Y, Santos B, Nagano A, Ashizawa N, Shirai T, Morimoto S, Watanabe H, Aoki K, Sato Y 2023 Optical and EUV Nanolithography XXXVI San Jose, California, United States, May 26, 2023 pPC124940E

    [8]

    Kruecken T 2007 AIP Conf. Proc. 901 181Google Scholar

    [9]

    Hassanein A, Sizyuk V A, Tolkach V I, Morozov V A, Rice B J 2004 J. Micro/Nanolithgr. MEMS MOEMS 3 130Google Scholar

    [10]

    Hassanein A, Sizyuk V, Sizyuk T 2008 Emerging Lithographic Technologies XII, San Jose, California, United States, March 20, 2008 p692113

    [11]

    Zakharov V S, Juschkin L, Zakharov S V, O’Sullivan G, Sokel E, Tobin I 2012 International Workshop on EUV and Soft X-Ray Sources Dublin, Ireland, October 8–11, 2012 pS26

    [12]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Extreme Ultraviolet (EUV) Lithography San Jose, California, United States, March 22, 2010 p76363D

    [13]

    Masnavi M, Nakajima M, Hotta E, Horioka K, Niimi G, Sasaki A 2007 J. Appl. Phys. 101 033306Google Scholar

    [14]

    Tsygvintsev I P, Krukovskiy A Y, Gasilov V A, Novikov V G, Romanov I V, Paperny V L, Rupasov A A 2016 Mathematical Models and Computer Simulations 8 595Google Scholar

    [15]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O’Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O’Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

    [16]

    吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Ramis R, 王真, 祁建敏, 周林, 梁川 2017 物理学报 66 215201Google Scholar

    Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Wang Z, Qi J M, Zhou L, Liang C 2017 Acta Phys. Sin. 66 215201Google Scholar

    [17]

    陈忠旺, 宁成 2017 物理学报 66 215202Google Scholar

    Cheng Z W, Ning C 2017 Acta Phys. Sin. 66 215202Google Scholar

    [18]

    Zakharov S V, Zakharov V S, Choi P, Krukovskiy A Y, Novikov V G, Solomyannaya A D, Berezin A V, Vorontsov A S, Markov M B, Parot’kin S V 2011 Extreme Ultraviolet (EUV) Lithography II San Jose, California, United States, April 8, 2011 p796932

    [19]

    Zakharov V S 2017 The International Photonics and Optoelectronics Meeting, Wuhan, China, November 3–5, 2017 pASu4A.1

    [20]

    Sasaki A, Sunahara A, Furukawa H, Nishihara K, Nishikawa T, Koike F 2016 J. Phys. Conf. 688 012099Google Scholar

    [21]

    Wang L J, Qian Z H, Huang X L, Jia S L 2013 IEEE T. Plasma Sci. 41 2015Google Scholar

    [22]

    Vovchenko E D, Melekhov A P V 2016 International Conference of Photonics and Information Optics Moscow, Russia, February 3–5, 2016 p012013

    [23]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [24]

    Sasaki A 2013 High Energ. Dens. Phys. 9 325Google Scholar

    [25]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [26]

    段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等离子体物理 31 2Google Scholar

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 2Google Scholar

    [27]

    段耀勇, 郭永辉, 邱爱慈, 吴刚 2010 物理学报 59 5588Google Scholar

    Duan Y Y, Guo Y H, Qiu A C, Wu G 2010 Acta Phys. Sin. 59 5588Google Scholar

    [28]

    Dunning F B, Hulet R G 1997 Atomic, Molecular, and Optical Physics: Charged Particles (San Diego: Academic Press) p169

    [29]

    韩小英, 李凌霄, 戴振生, 郑无敌, 谷培俊, 吴泽清 2021 物理学报 70 115202Google Scholar

    Han X Y, Li L X, Dai Z S, Zheng W D, Gu P J, Wu Z Q 2021 Acta Phys. Sin. 70 115202Google Scholar

    [30]

    Vichev I Y, Solomyannaya A D, Grushin A S, Kim D A 2019 High Energ. Dens. Phys. 33 100713Google Scholar

    [31]

    Gu M F 2004 AIP Conf. Proc. 730 127Google Scholar

    [32]

    Han B, Wang F, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Jpn. 67 29Google Scholar

    [33]

    Zeng J L, Gao C, Yuan J M 2010 Phys. Rev. E 82 026409Google Scholar

    [34]

    王均武, 王新兵, 左都罗 2020 激光技术 44 173Google Scholar

    Wang J W, Wang X B, Zuo D L 2020 Laser Technology 44 173Google Scholar

    [35]

    Xie Z, Wu J, Dou Y P, Lin J Q, Tomie T 2019 AIP Adv. 9 085029Google Scholar

    [36]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Chin. Phys. B 30 095207Google Scholar

  • [1] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [3] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [4] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [5] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [6] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [7] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法. 物理学报, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [8] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [9] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [10] 戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全. 纳秒激光诱导空气等离子体射频辐射特性研究. 物理学报, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Rafael Ramis, 王真, 祁建敏, 周林, 梁川. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟. 物理学报, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [13] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对. 物理学报, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [14] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [15] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用. 物理学报, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [16] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [17] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [18] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型. 物理学报, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [19] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究. 物理学报, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [20] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
计量
  • 文章访问数:  2359
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-09-15
  • 上网日期:  2023-12-15
  • 刊出日期:  2024-01-05

/

返回文章
返回