搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属微粒影响三电极气体火花开关击穿过程的仿真研究

周鑫淼 张博雅 陈立 李兴文

引用本文:
Citation:

金属微粒影响三电极气体火花开关击穿过程的仿真研究

周鑫淼, 张博雅, 陈立, 李兴文

Simulation of effect of metal particles on breakdown process of three-electrode gas spark switches

Zhou Xin-Miao, Zhang Bo-Ya, Chen Li, Li Xing-Wen
PDF
HTML
导出引用
  • 气体火花开关在脉冲功率技术中得到了大量应用, 但由于脉冲功率技术大电流高电压的特点, 气体火花开关在使用过程中很容易对电极表面造成烧蚀, 烧蚀产生的金属微粒会显著影响开关的稳定性和可靠性. 本文首先针对大气压氮气环境下的三电极气体火花开关放电过程进行建模, 对触发极边缘高场强区域的电离系数进行修正, 使用场致电子发射电流模拟初始电子产生的过程, 深入探究开关导通的物理机理, 详细叙述开关击穿过程各阶段的放电形态. 接着研究了金属微粒对于击穿过程的影响, 研究表明金属微粒的存在增强了触发极附近的电场, 加速了初始电子云的产生, 同时金属微粒与触发极之间会率先击穿, 并成为后续流注发展的源头. 除此之外, 金属微粒对于流注的传播具有阻碍作用, 使放电通道产生分支. 最后本文讨论了不同形状以及尺寸的金属微粒对于放电过程的影响, 这些都为进一步研究三电极气体火花开关放电过程以及金属微粒诱发开关击穿的物理机理提供了理论支撑.
    Compared with two-electrode gas spark switch, three-electrode gas spark switch has the advantages of lower operating voltage, higher reliability and less discharge jitter, so it has been widely used in pulse power systems. However, due to the characteristics of pulse power technology, the gas spark switch is easy to cause ablation on the electrode surface during use, and the metal particles generated by ablation will significantly affect the stability and reliability of the switch. In this work the discharge process of the three-electrode gas spark switch under atmospheric pressure nitrogen environment is simulated first. In this model, the ionization coefficient near the trigger electrode is modified to compensate for the shortcomings of the local field approximation, and the relevant mathematical derivation process is given. The formation of the initial electrons is described by the field electron emission phenomenon, and the development process of electron collapse into the streamer is obtained. The physical mechanism of switch on is investigated, and the development process of each stage of switch discharge is described in detail. Then, the discharge process of the switch is studied when there are metal particles near the trigger. The study shows that the presence of metal particles enhances the electric field near the trigger and accelerates the formation of the initial electron cloud. In addition, in the presence of metal particles, the metal particles and the trigger will first break down, forming a high-density plasma channel after the breakdown, and becoming the source of the subsequent flow development. At the same time, because the metal particles on the channel have an obstructing effect on the streamer development, the streamer generates a discharge branch after contacting metal particles. In the end, the influences of metal particles of different shapes and sizes on the discharge process are discussed. The results show that metal particles with sharp shapes have stronger electric field distortion, when the electric field intensity is large enough, it may cause field emission on the surface of metal particle. And it is also made clear that the size of metal particle is small, the obstruction of the development path of streamer is small, and the streamers quickly converge behind the particles.
      通信作者: 张博雅, zhangby@xjtu.edu.cn
      Corresponding author: Zhang Bo-Ya, zhangby@xjtu.edu.cn
    [1]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [2]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210

    [3]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar

    [4]

    Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar

    [5]

    Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar

    [6]

    Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar

    [7]

    You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar

    [8]

    Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar

    [9]

    Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar

    [10]

    Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar

    [11]

    徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar

    Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar

    [12]

    Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar

    [13]

    Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar

    [14]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [15]

    Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar

    [16]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar

    Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [19]

    Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar

    [20]

    Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar

    [21]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [22]

    Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar

    [23]

    Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar

    [24]

    杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 物理学报 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [25]

    Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar

    [26]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar

    [27]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [28]

    李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar

    Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar

  • 图 1  开关结构示意图

    Fig. 1.  Schematic diagram of switch structure.

    图 2  触发脉冲波形实测图

    Fig. 2.  Trigger pulse waveform.

    图 3  电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Fig. 3.  Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 4  电场模时空分布图 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Fig. 4.  Spatial and temporal distribution of electric field modes: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 5  金属微粒所带电荷量

    Fig. 5.  Charge carried by metal particles.

    图 6  有无金属微粒存在时触发极表面发射电流波形

    Fig. 6.  Surface emission current waveforms of the trigger electrode in the presence or absence of metal particles.

    图 7  触发极电场局部放大图 (a)无金属微粒; (b)金属微粒

    Fig. 7.  Local magnification of the electric field at the trigger electrode: (a) No metal particles; (b) with metal particles.

    图 8  电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Fig. 8.  Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 9  不同形状、半径金属微粒对触发极附近电场的影响

    Fig. 9.  Effect of metal particles of different shapes and radius on the electric field near the trigger electrode.

    图 10  不同尺寸微粒下微粒与电极间隙电场分布图

    Fig. 10.  Distribution of electric field between particle and electrode gap for different particle sizes.

    图 11  不同尺寸金属微粒存在时的电子密度分布图, 红色等高线为1×1019 m–3正离子数密度等高线 (a) r = 10 μm; (b) r = 20 μm

    Fig. 11.  Electron density distribution in the presence of metal particles of different sizes, with the red contour being the 1×1019 m–3 positive ion number density contour: (a) r = 10 μm; (b) r = 20 μm.

  • [1]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [2]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210

    [3]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar

    [4]

    Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar

    [5]

    Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar

    [6]

    Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar

    [7]

    You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar

    [8]

    Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar

    [9]

    Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar

    [10]

    Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar

    [11]

    徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar

    Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar

    [12]

    Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar

    [13]

    Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar

    [14]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [15]

    Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar

    [16]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar

    Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [19]

    Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar

    [20]

    Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar

    [21]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [22]

    Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar

    [23]

    Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar

    [24]

    杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 物理学报 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [25]

    Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar

    [26]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar

    [27]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [28]

    李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar

    Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar

  • [1] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [2] 孙强, 周前红, 宋萌萌, 杨薇, 董烨. 氮气火花开关击穿机制的理论和数值研究. 物理学报, 2021, 70(1): 015202. doi: 10.7498/aps.70.20201206
    [3] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度. 物理学报, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [4] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [5] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [6] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [7] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究. 物理学报, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [8] 苏兆锋, 杨海亮, 张鹏飞, 来定国, 郭建明, 任书庆, 王强. 脉冲电场下两种电极材料表面电子发射阈值特性的实验研究. 物理学报, 2014, 63(10): 106801. doi: 10.7498/aps.63.106801
    [9] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [10] 袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬. 碳纳米管冷阴极脉冲发射特性及仿真模型研究. 物理学报, 2012, 61(21): 216101. doi: 10.7498/aps.61.216101
    [11] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [12] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响. 物理学报, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [13] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [14] 潜力, 王昱权, 刘亮, 范守善. 碳纳米管在大气压环境中的场致发射特性. 物理学报, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [15] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [16] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [17] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [18] 丁 佩, 晁明举, 梁二军, 郭新勇. 不同氮源制备CNx纳米管薄膜及其低场致电子发射性能. 物理学报, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [19] 刘筠乔, 詹杰民. Spindt型与薄膜场致发射的数值模拟与特性比较. 物理学报, 2005, 54(7): 3439-3443. doi: 10.7498/aps.54.3439
    [20] 丁 佩, 晁明举, 梁二军, 郭新勇, 杜祖亮. CNx纳米管的制备、结构观察及低场致电子发射性能研究. 物理学报, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
计量
  • 文章访问数:  910
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-09-02
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回