-
流注放电被应用于消毒杀菌、臭氧生产等领域, 其中二次流注放电过程对臭氧有效生产持续时间和效率影响明显, 然而氧浓度对二次流注放电过程及目标产物产量的影响还不清楚. 为此, 开发不同氧浓度下针-板电极二次流注发展过程的流体分析模型, 解决高氧浓度下流注放电模拟的非物理分支(Branch)问题, 分析氧浓度对二次正流注光发射特性的影响, 研究不同氧浓度下的阴极转移电荷量和激发态氧原子$ \rm O(^3P) $产量, 并与实验数据进行对比. 结果表明, 氧浓度由20%增加至90%后, 二次流注放电通道电子密度平均降低90%, 电场强度变化 <10%, 单次放电持续时间缩短77%, 激发态氧原子$ \rm O(^3P) $单位能量产率上升64%, 同时放电时间缩短会使产量降低50%, 但激发态氧原子$ \rm O(^3P) $单位能量产率的提高优于单次降产量. 氧浓度增大引发氧分子二、三体吸附效应增强和电子密度下降是单次放电产量下降的原因, 电子与氧分子碰撞概率提升是单位能量产率上升的原因.Streamer discharge has been widely applied in fields such as sterilization, disinfection, and ozone generation. The secondary discharge process significantly affects the effective ozone production duration and efficiency. However, the mechanism by which oxygen concentration influences secondary discharge characteristics and the yield of target products remains unclear. To address this issue, we developed a fluid-based analysis model of the secondary positive streamer discharge process between needle-plate electrodes under varying oxygen concentrations. This model accounts for the radial electric field and resolves potential non-physical branching issues that may arise in discharge simulations at high oxygen concentrations. In this study, we examine the effect of oxygen concentration on the optical emission characteristics of secondary positive streamers. The optical emission intensity, cathode charge transfer, and the yield of excited-state oxygen atoms ($ \rm O(^3P) $) under different oxygen concentrations are investigated and compared with experimental data. The results indicate that when the oxygen concentration increases from 20% to 90%, the optical emission intensity of the secondary discharge decreases by approximately 0.2%. Meanwhile, the average electron density in the discharge channel decreases by 90%, the electric field intensity changes by less than 10%, and the single discharge duration shortens by 77%. Under these conditions, the proportion of $ \rm O(^3P) $ yield originating from the primary discharge increases from 20% to 38%, and the unit energy yield of excited-state oxygen atoms $ \rm O(^3P) $ rises by 64%. Although the reduced discharge duration lowers the absolute $ \rm O(^3P) $ yield by 50%, the increase in unit energy yield more than compensates for the decrease in single-discharge yield. The decrease in single-discharge yield with increasing oxygen concentration arises from enhanced two- and three-body adsorption effects of oxygen molecules, which reduce the electron density. Additionally, the increased collision probability between electrons and oxygen molecules further influences these characteristic changes.
-
Keywords:
- streamer discharge /
- fluid simulation /
- numerical simulation /
- duration
-
图 15 不同氧浓度下计算与实验得出的放电能量对比
Fig. 15. Comparison of the discharge energy calculated in the simulation and measured in the experiment presented in reference[4].
图 16 (a) 不同的$ \rm O_2 $浓度下产生的$ \rm O(^3 P) $总量随时间变化, (b) 计算出的不同$ \rm O_2 $浓度下一次流注产生的$ \rm O(^3 P) $产量与总产量比值
Fig. 16. Dependence of the total amount of $ \rm O(^3 P) $ produced on the time at various $ \rm O_2 $ concentrations and (b) fraction of $ \rm O(^3 P) $ produced by the primary streamer to the total amount of $ \rm O(^3 P) $ production.
图 17 不同的$ \rm O_2 $浓度下 (a) $ E/N $(实线)和电子密度(虚线), (b)对称轴上$ z=3\rm\, mm $处的$ \rm O(^3 P) $密度随时间变化
Fig. 17. Time dependencies of (a) $ E/N $ (indicated by the solid line) and the electron density (indicated by the dashed line), and (b) $ \rm O(^3 P) $ density at $ z=3\rm\, mm $ on the symmetric axis under various $ \rm O_2 $ concentrations.
-
[1] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 67 045101Google Scholar
Li W Han, Sun B An, Zhang X, Yao W Cong, Chang S Zheng, Zhang j Guan 2018 Acta Phys. Sin 67 045101Google Scholar
[2] Samaranayake W, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 254Google Scholar
[3] Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H 2008 IEEE transactions on plasma science 36 2592Google Scholar
[4] Komuro A, Yoshino A, Wei Z, Ono R 2023 Journal of Physics D: Applied Physics 56 185201Google Scholar
[5] Meher P, Deshmukh N, Mashalkar A, Kumar D 2023 In AIP Conference Proceedings, vol. 2764 (AIP Publishing
[6] Wang D, Namihira T 2020 Plasma Sources Science and Technology 29 023001Google Scholar
[7] Li X, Sun A, Zhang G, Teunissen J 2020 Plasma Sources Science and Technology 29 065004Google Scholar
[8] Syssoev V, Naumova M, Kuznetsov Y, Orlov A, Sukharevsky D, Makalsky L, Kukhno A 2022 Inorganic Materials: Applied Research 13 1380Google Scholar
[9] Sisoev V, Zavyalova A, Makalsky L, Kuchno A 2021 In IOP Conference Series: Earth and Environmental Science, vol. 723 (IOP Publishing), p 042068
[10] Wei Z, Komuro A, Ono R 2023 Plasma Processes and Polymers e2300113
[11] Abahazem A, Merbahi N, Ducasse O, Eichwald O, Yousfi M 2008 IEEE transactions on plasma science 36 924Google Scholar
[12] Ono R, Komuro A 2020 Journal of Physics D: Applied Physics 53 035202Google Scholar
[13] Ono R, Oda T 2003 Journal of Physics D: Applied Physics 36 1952Google Scholar
[14] Meek J 1940 Physical review 57 722Google Scholar
[15] Raether H 1939 Zeitschrift für Physik 112 464
[16] Sigmond R 1984 Journal of applied physics 56 1355Google Scholar
[17] Nijdam S, Teunissen J, Takahashi E, Ebert U 2016 Plasma Sources Science and Technology 25 044001Google Scholar
[18] Babaeva N Y, Naidis G 1996 Journal of Physics D: Applied Physics 29 2423Google Scholar
[19] Zhelezniak M, Mnatsakanian A K, Sizykh S V 1982 High Temperature Science 20 357
[20] Eichwald O, Ducasse O, Dubois D, Abahazem A, Merbahi N, Benhenni M, Yousfi M 2008 Journal of Physics D: Applied Physics 41 234002Google Scholar
[21] Ono R, Takezawa K, Oda T 2009 Journal of Applied Physics 106 043302Google Scholar
[22] Komuro A, Ono R, Oda T 2013 Journal of Physics D: Applied Physics 46 175206Google Scholar
[23] Komuro A, Takahashi K, Ando A 2015 Journal of Physics D: Applied Physics 48 215203Google Scholar
[24] Wei Z, Komuro A, Ono R 2023 Plasma Sources Science and Technology 32 115016Google Scholar
[25] Murphy T I. www.lxcat.net
[26] Hagelaar G, Pitchford L C 2005 Plasma sources science and technology 14 722Google Scholar
[27] Bourdon A, Pasko V, Liu N, Célestin S, Ségur P, Marode E 2007
[28] Yoshida K, Komuro A, Wada N, Naito T, Ando A 2022 Journal of Electrostatics 117 103716Google Scholar
[29] DeMore W, Sander S, Golden D, Hampson R, Kurylo M, Howard C, Ravishankara A, Kolb C, Molina M 1997 JPL Publication 97 1
[30] Komuro A, Ono R, Oda T 2013 Plasma Sources Science and Technology 22 045002Google Scholar
[31] Komuro A, Takahashi K, Ando A 2017 Plasma Sources Science and Technology 26 065003Google Scholar
计量
- 文章访问数: 212
- PDF下载量: 5
- 被引次数: 0