搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究

魏振宇 刘亚坤

引用本文:
Citation:

不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究

魏振宇, 刘亚坤

Study on the Characteristics and Influencing Factors of Excited Oxygen Atom Generation in Secondary Streamer Discharge of Mixed Gases with Different Oxygen Concentrations

WEI Zhenyu, LIU Yakun
PDF
HTML
导出引用
  • 流注放电被应用于消毒杀菌、臭氧生产等领域, 其中二次流注放电过程对臭氧有效生产持续时间和效率影响明显, 然而氧浓度对二次流注放电过程及目标产物产量的影响还不清楚. 为此, 开发不同氧浓度下针-板电极二次流注发展过程的流体分析模型, 解决高氧浓度下流注放电模拟的非物理分支(Branch)问题, 分析氧浓度对二次正流注光发射特性的影响, 研究不同氧浓度下的阴极转移电荷量和激发态氧原子$ \rm O(^3P) $产量, 并与实验数据进行对比. 结果表明, 氧浓度由20%增加至90%后, 二次流注放电通道电子密度平均降低90%, 电场强度变化 <10%, 单次放电持续时间缩短77%, 激发态氧原子$ \rm O(^3P) $单位能量产率上升64%, 同时放电时间缩短会使产量降低50%, 但激发态氧原子$ \rm O(^3P) $单位能量产率的提高优于单次降产量. 氧浓度增大引发氧分子二、三体吸附效应增强和电子密度下降是单次放电产量下降的原因, 电子与氧分子碰撞概率提升是单位能量产率上升的原因.
    Streamer discharge has been widely applied in fields such as sterilization, disinfection, and ozone generation. The secondary discharge process significantly affects the effective ozone production duration and efficiency. However, the mechanism by which oxygen concentration influences secondary discharge characteristics and the yield of target products remains unclear. To address this issue, we developed a fluid-based analysis model of the secondary positive streamer discharge process between needle-plate electrodes under varying oxygen concentrations. This model accounts for the radial electric field and resolves potential non-physical branching issues that may arise in discharge simulations at high oxygen concentrations. In this study, we examine the effect of oxygen concentration on the optical emission characteristics of secondary positive streamers. The optical emission intensity, cathode charge transfer, and the yield of excited-state oxygen atoms ($ \rm O(^3P) $) under different oxygen concentrations are investigated and compared with experimental data. The results indicate that when the oxygen concentration increases from 20% to 90%, the optical emission intensity of the secondary discharge decreases by approximately 0.2%. Meanwhile, the average electron density in the discharge channel decreases by 90%, the electric field intensity changes by less than 10%, and the single discharge duration shortens by 77%. Under these conditions, the proportion of $ \rm O(^3P) $ yield originating from the primary discharge increases from 20% to 38%, and the unit energy yield of excited-state oxygen atoms $ \rm O(^3P) $ rises by 64%. Although the reduced discharge duration lowers the absolute $ \rm O(^3P) $ yield by 50%, the increase in unit energy yield more than compensates for the decrease in single-discharge yield. The decrease in single-discharge yield with increasing oxygen concentration arises from enhanced two- and three-body adsorption effects of oxygen molecules, which reduce the electron density. Additionally, the increased collision probability between electrons and oxygen molecules further influences these characteristic changes.
  • 图 1  针电极施加的脉冲电压波形: (a)从0至800 ns的电压波形, (b)为表现清晰放大x轴后由0至100 ns的电压波形

    Fig. 1.  Applied voltage $ V(t) $ at the anode (needle) in the simulation: (a) the voltage waveform from $ 0 $ to $ 800\, \rm ns $ and (b) enlarged voltage waveform from $ 0 $ to $ 100\rm\, ns $.

    图 2  用于计算径向电场的包含环绕针电极与的三维模型示意图

    Fig. 2.  Overview of the calculation region of the three-dimensional model for calculating the distribution of the electric field near the anode.

    图 3  包含环绕针电极的五针模型与单针电极三维模型针尖$ z=0 $处径向电场对比

    Fig. 3.  Distribution of radial electric field along $ z=0\, \rm mm $ calculated via the three-dimensional simulation.

    图 4  进行电场抑制前后模拟出的流注对比:  (a)未进行径向电场修正, (b)进行径向电场修正后的二次流注

    Fig. 4.  Simulated secondary streamer with and without modification: (a) with modification and (b) without modification.

    图 5  模拟的大气压条件下$ 0\sim\rm60\, ns $时间段ICCD相机拍摄的图像的流注发展过程

    Fig. 5.  Simulated emission ICCD figure of the secondary streamer under 20% $ \rm O_2 $ concentration from $ 0\sim60\rm\, ns $.

    图 6  实验获得的大气压条件下$ 0\sim\rm60\, ns $时间段ICCD相机图像的流注发展过程[12]

    Fig. 6.  Emission ICCD figure of the secondary streamer under 20% $ \rm O_2 $ concentration from $ 0\sim60\rm\, ns $ in the experiment[12]

    图 7  不同氧浓度下模拟与实验获得的阴极转移电荷量对比

    Fig. 7.  Comparison between the transferred charge calculated in the simulation and measured in the experiment.

    图 8  积分坐标系之间的关系: (a)轴对称坐标系与视线方向坐标系s, (b)圆柱对称Abel坐标系

    Fig. 8.  Relationship between integral coordinate systems: (a) Axisymmetric coordinate system with line-of-sight direction coordinate system s and (b) Cylindrically symmetric Abel coordinate system

    图 9  使用Abel及时间积分(快门时间2 ns)前后, 计算的发光强度对比

    Fig. 9.  Comparison of calculated luminous intensity before and after using Abel and time integration (gate time 2 ns).

    图 10  不同氧浓度下计算得出的二级流注的发射强度示意图

    Fig. 10.  The calculated 2D emission intensity of the secondary streamer under different oxygen concentrations.

    图 11  不同氧浓度下计算与实验得出的二次流注的发射总强度对比

    Fig. 11.  Comparison of calculated and experimentally derived total emission intensities for secondary streamer at different oxygen concentrations.

    图 12  不同氧浓度下二次流注过程$ t=100\rm\, ns $时的$ \mathrm{O(^3 P)} $密度分布

    Fig. 12.  Spatial distribution of $ \mathrm{O(^3 P)} $ at $ t=100\rm\, ns $ during secondary streamer at different oxygen concentrations.

    图 13  不同氧浓度下二次流注过程$ t=100\rm\, ns $时对称轴$ r=0\rm\, mm $上的$ \mathrm{O(^3 P)} $密度

    Fig. 13.  Density of $ \mathrm{O(^3 P)} $ on the axis of symmetry $ r=0\rm\, mm $ at $ t=100\rm\, ns $ for secondary streamer process at different oxygen concentrations.

    图 14  不同氧浓度下计算与实验得出的二次流注的产出$ \rm O(^3 P) $总量与每单位能量产率对比

    Fig. 14.  Comparison between the simulation and measurement results for (a) total number of measured $ \rm O_3 $ and simulated $ \rm O(^3 P) $ molecules and (b) measured $ \rm O_3 $ and simulated $ \rm O(^3 P) $ yields.

    图 15  不同氧浓度下计算与实验得出的放电能量对比

    Fig. 15.  Comparison of the discharge energy calculated in the simulation and measured in the experiment presented in reference[4].

    图 16  (a) 不同的$ \rm O_2 $浓度下产生的$ \rm O(^3 P) $总量随时间变化, (b) 计算出的不同$ \rm O_2 $浓度下一次流注产生的$ \rm O(^3 P) $产量与总产量比值

    Fig. 16.  Dependence of the total amount of $ \rm O(^3 P) $ produced on the time at various $ \rm O_2 $ concentrations and (b) fraction of $ \rm O(^3 P) $ produced by the primary streamer to the total amount of $ \rm O(^3 P) $ production.

    图 17  不同的$ \rm O_2 $浓度下 (a) $ E/N $(实线)和电子密度(虚线), (b)对称轴上$ z=3\rm\, mm $处的$ \rm O(^3 P) $密度随时间变化

    Fig. 17.  Time dependencies of (a) $ E/N $ (indicated by the solid line) and the electron density (indicated by the dashed line), and (b) $ \rm O(^3 P) $ density at $ z=3\rm\, mm $ on the symmetric axis under various $ \rm O_2 $ concentrations.

  • [1]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 67 045101Google Scholar

    Li W Han, Sun B An, Zhang X, Yao W Cong, Chang S Zheng, Zhang j Guan 2018 Acta Phys. Sin 67 045101Google Scholar

    [2]

    Samaranayake W, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 254Google Scholar

    [3]

    Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H 2008 IEEE transactions on plasma science 36 2592Google Scholar

    [4]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 Journal of Physics D: Applied Physics 56 185201Google Scholar

    [5]

    Meher P, Deshmukh N, Mashalkar A, Kumar D 2023 In AIP Conference Proceedings, vol. 2764 (AIP Publishing

    [6]

    Wang D, Namihira T 2020 Plasma Sources Science and Technology 29 023001Google Scholar

    [7]

    Li X, Sun A, Zhang G, Teunissen J 2020 Plasma Sources Science and Technology 29 065004Google Scholar

    [8]

    Syssoev V, Naumova M, Kuznetsov Y, Orlov A, Sukharevsky D, Makalsky L, Kukhno A 2022 Inorganic Materials: Applied Research 13 1380Google Scholar

    [9]

    Sisoev V, Zavyalova A, Makalsky L, Kuchno A 2021 In IOP Conference Series: Earth and Environmental Science, vol. 723 (IOP Publishing), p 042068

    [10]

    Wei Z, Komuro A, Ono R 2023 Plasma Processes and Polymers e2300113

    [11]

    Abahazem A, Merbahi N, Ducasse O, Eichwald O, Yousfi M 2008 IEEE transactions on plasma science 36 924Google Scholar

    [12]

    Ono R, Komuro A 2020 Journal of Physics D: Applied Physics 53 035202Google Scholar

    [13]

    Ono R, Oda T 2003 Journal of Physics D: Applied Physics 36 1952Google Scholar

    [14]

    Meek J 1940 Physical review 57 722Google Scholar

    [15]

    Raether H 1939 Zeitschrift für Physik 112 464

    [16]

    Sigmond R 1984 Journal of applied physics 56 1355Google Scholar

    [17]

    Nijdam S, Teunissen J, Takahashi E, Ebert U 2016 Plasma Sources Science and Technology 25 044001Google Scholar

    [18]

    Babaeva N Y, Naidis G 1996 Journal of Physics D: Applied Physics 29 2423Google Scholar

    [19]

    Zhelezniak M, Mnatsakanian A K, Sizykh S V 1982 High Temperature Science 20 357

    [20]

    Eichwald O, Ducasse O, Dubois D, Abahazem A, Merbahi N, Benhenni M, Yousfi M 2008 Journal of Physics D: Applied Physics 41 234002Google Scholar

    [21]

    Ono R, Takezawa K, Oda T 2009 Journal of Applied Physics 106 043302Google Scholar

    [22]

    Komuro A, Ono R, Oda T 2013 Journal of Physics D: Applied Physics 46 175206Google Scholar

    [23]

    Komuro A, Takahashi K, Ando A 2015 Journal of Physics D: Applied Physics 48 215203Google Scholar

    [24]

    Wei Z, Komuro A, Ono R 2023 Plasma Sources Science and Technology 32 115016Google Scholar

    [25]

    Murphy T I. www.lxcat.net

    [26]

    Hagelaar G, Pitchford L C 2005 Plasma sources science and technology 14 722Google Scholar

    [27]

    Bourdon A, Pasko V, Liu N, Célestin S, Ségur P, Marode E 2007

    [28]

    Yoshida K, Komuro A, Wada N, Naito T, Ando A 2022 Journal of Electrostatics 117 103716Google Scholar

    [29]

    DeMore W, Sander S, Golden D, Hampson R, Kurylo M, Howard C, Ravishankara A, Kolb C, Molina M 1997 JPL Publication 97 1

    [30]

    Komuro A, Ono R, Oda T 2013 Plasma Sources Science and Technology 22 045002Google Scholar

    [31]

    Komuro A, Takahashi K, Ando A 2017 Plasma Sources Science and Technology 26 065003Google Scholar

  • [1] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [3] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [4] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, doi: 10.7498/aps.68.20190060
    [5] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, doi: 10.7498/aps.68.20190378
    [6] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, doi: 10.7498/aps.68.20190734
    [7] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, doi: 10.7498/aps.67.20172309
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [9] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, doi: 10.7498/aps.66.055101
    [10] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, doi: 10.7498/aps.66.025203
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, doi: 10.7498/aps.63.067901
    [12] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, doi: 10.7498/aps.62.204702
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, doi: 10.7498/aps.62.175204
    [14] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, doi: 10.7498/aps.62.124703
    [15] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, doi: 10.7498/aps.61.045205
    [16] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, doi: 10.7498/aps.60.015201
    [17] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, doi: 10.7498/aps.53.3440
    [20] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, doi: 10.7498/aps.52.1694
计量
  • 文章访问数:  212
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-23

/

返回文章
返回