搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变温壁驱动腔内热蠕流特性的离散气体动理学格式模拟研究

刘赞奇 罗源 翁万良 何清 陶实

引用本文:
Citation:

变温壁驱动腔内热蠕流特性的离散气体动理学格式模拟研究

刘赞奇, 罗源, 翁万良, 何清, 陶实

A DUGKS study of rarefied gas flowing in a square cavity under harmonic heating

LIU Zanqi, LUO Yuan, WEN Wangliang, HE Qing, TAO Shi
PDF
导出引用
  • 为考察壁面温度变化对受限空间内稀薄气体流动与传热特性的影响,采用离散气体动理学格式(DUGKS)模拟研究了方腔内的热蠕流动。腔体四周为静止漫反射恒温壁面,上、下壁温度则随时间周期性变化。模拟的参数范围如下:变温频率0.5 ≤ St ≤ 5.0、变温振幅0.1 ≤ Ah ≤ 0.8和努森数0.01 ≤ Kn ≤ 10。数值结果表明:方腔内气体流动与传热特性呈现周期性变化,且不会出现反傅里叶热传递。变温频率、振幅和努森数的提高均可增强腔内热蠕流动强度,且变温壁面附近速度滑移和温度跳跃增大。StKn的增加导致出现传热滞后现象,壁面换热能力减弱。特别地,当St=0.5较小时腔内观察到复杂涡流结构;St=5.0时气体由变温壁面向腔体水平中心线均匀流动,涡流消失的同时左、右壁面中点附近由吸热区转变为放热区。Ah增大时腔内温度场和速度场结构变化不大,而壁面传热强度减小。
    In order to examine the impact of wall temperature change on the flow and heat transfer properties of rarefied gases in restricted space, the discrete unified gas kinetic scheme (DUGKS) is applied to the simulation of the thermal creep flows in a square cavity. All the boundaries of the cavity are stationary and diffuse reflection walls. The left and right walls have a lower temperature, and the upper and lower ones are under harmonic heating. The simulation parameters considered in the present work are set as follows: the Knudsen number 0.01 ≤ Kn ≤ 10, temperature change frequency 0.5 ≤ St ≤ 5, and Temperature change amplitude 0.1 ≤ Ah ≤ 0.8. The results indicate that the velocity and temperature fields in the cavity exhibit periodic variations. No inverse Fourier heat transfer phenomenon was observed within the parameter ranges studied. The intensity of the thermal creep flow can be increased by increasing the frequency and amplitude of the temperature, and the Knudsen number. This can also raise the temperature jump and velocity slip close to the temperature change walls. Heat transfer lag and a reduction in the wall's heat transfer capability are caused by increases in St and Kn. When St = 0.5 is small, a complex vortex structure is seen in the cavity. As the value of St rises to 5, the vortex disappears, the gas travels from the variable temperature wall to the cavity's horizontal centerline, and the region close to the middle of the left and right walls changes from an endothermic to an exothermic zone. Furthermore, the temperature and velocity fields inside the cavity hardly change, but the degree of heat transfer on the wall decreases with larger Ah. This work offers helpful recommendations for the design of MEMS devices that use pulsing heating.
  • [1]

    Shen Q 2006 Adv. Mech. 36 142 (in Chinese) [沈青 2006 力学进展 36 142]

    [2]

    Frangi A, Frezzotti A, Lorenzani S 2007 Comput. Struct. 85 810

    [3]

    Mei T,Chen Z X,Yang L,Zhu H M,Miao R C Acta Phys. Sin. 69 326 (in Chinese) [梅涛,陈占秀,杨历,朱洪漫,苗瑞灿 2020物理学报 69 326]

    [4]

    Ramadan K M, Qisieh O, Tlili I 2022 Proc. Inst. Mech. Eng., Part C. 236 5033

    [5]

    Mousivand M, Roohi E 2022 Phys. Fluids. 34 052002

    [6]

    Lan J, Xie J, Ye J, Peng W Z,Jiao X Y 2022 Int. J. Hydrogen Energy. 47 19206

    [7]

    Hang F,Wang X W,Zhang W Q,Zhang S W,Zhang Z J 2023 J. Vac. Sci. Technol. 43 238 (in Chinese)[韩峰,王晓伟,张文青,张世伟,张志军 2023真空科学与技术学报43 238]

    [8]

    Wang X W,Zhang Z J,Zhang W Q,Su T Y,Zhang S W 2020 Vac. Cryogen. (in Chinese)[王晓伟,张志军,张文青,苏天一,张世伟 2020真空与低温 26 73]

    [9]

    Wu L, Zhang Y H, Li Z H 2017 Sci. Sin.phys. Mech. As. 47 070004

    [10]

    Tsimpoukis A, Vasileiadis N, Tatsios G, Valougeorgis D 2019 Phys. Fluids 31 067108

    [11]

    Taassob A, Kamali R, Bordbar A 2018 Vacuum 151 197

    [12]

    Nabapure D 2021 J. Comput. Sci.neth. 49 101276.

    [13]

    Wu L, Reese J M, Zhang Y. 2014 J. Fluid Mech. 748 350

    [14]

    Ogata Y, Kawaguchi T 2011 J. Fluid Sci. Technol. 6 215

    [15]

    Palharini R C, Scanlon T J, White C 2018 Comput. Fluids 165 173

    [16]

    Yang W Q, Tang S, Yang H 2019 Appl. Sci. 9 2733

    [17]

    Dan X D,Wang M R 2013 J. Eng. Thermophys. 34 2159 (in Chinese)[单小东,王沫然2013工程热物理学报 34 2159]

    [18]

    Zhang S,Fang S Z,Xu Y 2021 J. Propul. Technol. 42 2002 (in Chinese)[张帅,方蜀州,许阳 2021 推进技术 42 2002]

    [19]

    Zhang J, Yao S Q, Fei F, Ghalambaz M, Wen D S 2020 Phys. Fluids 32 102001

    [20]

    Moghadam E Y, Roohi E, Esfahani J A 2014 Vacuum 109 333

    [21]

    Yamaguchi H, Perrier P, Ho M T, Méolans J G, Niimi T, Graur I 2016 J. Fluid Mech. 795 690

    [22]

    Barbera E, Brini F. 2018 Europhys. Lett. 120 34001

    [23]

    Akhlaghi H, Roohi E, Stefanov S 2018 Sci. Rep. 8 13533

    [24]

    Han Y L 2010 Fluid Dyn. Res. 42 045505

    [25]

    Zhu M B, Roohi E, Ebrahimi A 2023 Phys. Fluids 35 052012

    [26]

    Roohi E, Shahabi V, Bagherzadeh A 2018 Int. J. Therm. Sci. 125 381

    [27]

    Wang P, Zhu L H, Su W,Wu L,Zhang Y H 2018 Phys. Rev. E 97 043103

    [28]

    Zhu L H, Guo Z L, Xu K. 2016 Comput. Fluids 127 211

    [29]

    Wang X W, Su T Y, Zhang W Q, Zhang Z J,Zhang S W 2020 Microsyst. Nanoeng. 6 26

    [30]

    Zhang B H,Zheng L 2020 Acta Phys. Sin. 69 152 (in Chinese) [张贝豪 郑林 2020物理学报 69 152]

    [31]

    Ou Y, Qu F, Wang G Y, Nie M Y, Li Z G,Ou W, Xie C Q 2016 Appl. Phys. Lett. 109 023512

    [32]

    Wan Q K,Zhang Y,Guo Z L 2023 J. Chin. J. Comput. Phys. 40 653 (in Chinese)[万启坤,张月,郭照立 2023计算物理40 653]

    [33]

    Kalempa D, Sharipov F, Silva J C 2019 Vacuum 159 82

    [34]

    Bargatin I, Kozinsky I, Roukes M L 2007 Appl. Phys. Lett. 90 093116

    [35]

    Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead H G. 2005 Nano Lett. 5 925

    [36]

    Juvé V, Crut A, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F 2010 Nano lett. 10 1853

    [37]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313

    [38]

    Sun X M,Yao Z H,Yang J L 2002 Acta Phys. Sin. 51 1942 (in Chinese) [孙喜明,姚朝晖,杨京龙 2002 物理学报 51 1942]

    [39]

    Sun J K,Lin C D,Su X L,Tan Z C,Chen Y L,Ming P J 2024 Acta Phys. Sin. 73 40 (in Chinese) [孙佳坤,林传栋,苏咸利,谭志城, 陈亚楼, 明平剑 2024物理学报73 40]

    [40]

    Huang J C, Xu K, Yu P. 2013 Commun. Comput. Phys. 14 1147

    [41]

    Wang Y, Zhong C W, Liu S 2019 Phys. Rev. E 100 063310

    [42]

    Zhu L H, Chen S Z, Guo Z L. 2017 Comput. Phys. Commun. 213 155

    [43]

    Vargas M, Tatsios G, Valougeorgis D, Stefanov S 2014 Phys. Fluids 26 057101

  • [1] 罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平. 壁面催化对高温非平衡流场磁控效果影响分析. 物理学报, doi: 10.7498/aps.74.20241307
    [2] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, doi: 10.7498/aps.73.20240369
    [3] 郭义丰, 王智彬, 贾莉斯, 莫松平, 陈颖. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟. 物理学报, doi: 10.7498/aps.72.20222400
    [4] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, doi: 10.7498/aps.71.20212171
    [5] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, doi: 10.7498/aps.68.20190684
    [6] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, doi: 10.7498/aps.68.20190248
    [7] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播. 物理学报, doi: 10.7498/aps.68.20181923
    [8] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究. 物理学报, doi: 10.7498/aps.67.20171808
    [9] 常松涛, 田棋杰, 何锋赟, 余毅, 李周. 基于球面反射温阑的红外探测器变f数设计. 物理学报, doi: 10.7498/aps.66.150701
    [10] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, doi: 10.7498/aps.64.224702
    [11] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, doi: 10.7498/aps.62.064701
    [12] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究. 物理学报, doi: 10.7498/aps.62.249301
    [13] 张小娟, 周青军, 杨薇. 光源附近空间分辨漫反射的SP3研究. 物理学报, doi: 10.7498/aps.61.034202
    [14] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析. 物理学报, doi: 10.7498/aps.60.120508
    [15] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, doi: 10.7498/aps.56.2119
    [16] 薛小波, 姚朝晖, 何 枫. 信息保存方法在微尺度变温流场中的应用研究. 物理学报, doi: 10.7498/aps.55.1276
    [17] 游铭长, 张舒安. 海面漫反射率近似表示式的解析推导. 物理学报, doi: 10.7498/aps.43.683
    [18] 陈篪, 邓枝生, 吴伯群, 丁树深. γ′晶体的蠕变及持久性能. 物理学报, doi: 10.7498/aps.23.69
    [19] 王鼎盛, 陈冠冕, 金朝鼎. 难向交变场频率对磁膜畴壁蠕移的影响. 物理学报, doi: 10.7498/aps.21.2030
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, doi: 10.7498/aps.10.71
计量
  • 文章访问数:  79
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回