-
为考察壁面温度变化对受限空间内稀薄气体流动与传热特性的影响,采用离散气体动理学格式(DUGKS)模拟研究了方腔内的热蠕流动。腔体四周为静止漫反射恒温壁面,上、下壁温度则随时间周期性变化。模拟的参数范围如下:变温频率0.5 ≤ St ≤ 5.0、变温振幅0.1 ≤ Ah ≤ 0.8和努森数0.01 ≤ Kn ≤ 10。数值结果表明:方腔内气体流动与传热特性呈现周期性变化,且不会出现反傅里叶热传递。变温频率、振幅和努森数的提高均可增强腔内热蠕流动强度,且变温壁面附近速度滑移和温度跳跃增大。St和Kn的增加导致出现传热滞后现象,壁面换热能力减弱。特别地,当St=0.5较小时腔内观察到复杂涡流结构;St=5.0时气体由变温壁面向腔体水平中心线均匀流动,涡流消失的同时左、右壁面中点附近由吸热区转变为放热区。Ah增大时腔内温度场和速度场结构变化不大,而壁面传热强度减小。In order to examine the impact of wall temperature change on the flow and heat transfer properties of rarefied gases in restricted space, the discrete unified gas kinetic scheme (DUGKS) is applied to the simulation of the thermal creep flows in a square cavity. All the boundaries of the cavity are stationary and diffuse reflection walls. The left and right walls have a lower temperature, and the upper and lower ones are under harmonic heating. The simulation parameters considered in the present work are set as follows: the Knudsen number 0.01 ≤ Kn ≤ 10, temperature change frequency 0.5 ≤ St ≤ 5, and Temperature change amplitude 0.1 ≤ Ah ≤ 0.8. The results indicate that the velocity and temperature fields in the cavity exhibit periodic variations. No inverse Fourier heat transfer phenomenon was observed within the parameter ranges studied. The intensity of the thermal creep flow can be increased by increasing the frequency and amplitude of the temperature, and the Knudsen number. This can also raise the temperature jump and velocity slip close to the temperature change walls. Heat transfer lag and a reduction in the wall's heat transfer capability are caused by increases in St and Kn. When St = 0.5 is small, a complex vortex structure is seen in the cavity. As the value of St rises to 5, the vortex disappears, the gas travels from the variable temperature wall to the cavity's horizontal centerline, and the region close to the middle of the left and right walls changes from an endothermic to an exothermic zone. Furthermore, the temperature and velocity fields inside the cavity hardly change, but the degree of heat transfer on the wall decreases with larger Ah. This work offers helpful recommendations for the design of MEMS devices that use pulsing heating.
-
Keywords:
- Thermal creep flows /
- DUGKS /
- thermally induced oscillating flow /
- Diffuse Boundary
-
[1] Shen Q 2006 Adv. Mech. 36 142 (in Chinese) [沈青 2006 力学进展 36 142]
[2] Frangi A, Frezzotti A, Lorenzani S 2007 Comput. Struct. 85 810
[3] Mei T,Chen Z X,Yang L,Zhu H M,Miao R C Acta Phys. Sin. 69 326 (in Chinese) [梅涛,陈占秀,杨历,朱洪漫,苗瑞灿 2020物理学报 69 326]
[4] Ramadan K M, Qisieh O, Tlili I 2022 Proc. Inst. Mech. Eng., Part C. 236 5033
[5] Mousivand M, Roohi E 2022 Phys. Fluids. 34 052002
[6] Lan J, Xie J, Ye J, Peng W Z,Jiao X Y 2022 Int. J. Hydrogen Energy. 47 19206
[7] Hang F,Wang X W,Zhang W Q,Zhang S W,Zhang Z J 2023 J. Vac. Sci. Technol. 43 238 (in Chinese)[韩峰,王晓伟,张文青,张世伟,张志军 2023真空科学与技术学报43 238]
[8] Wang X W,Zhang Z J,Zhang W Q,Su T Y,Zhang S W 2020 Vac. Cryogen. (in Chinese)[王晓伟,张志军,张文青,苏天一,张世伟 2020真空与低温 26 73]
[9] Wu L, Zhang Y H, Li Z H 2017 Sci. Sin.phys. Mech. As. 47 070004
[10] Tsimpoukis A, Vasileiadis N, Tatsios G, Valougeorgis D 2019 Phys. Fluids 31 067108
[11] Taassob A, Kamali R, Bordbar A 2018 Vacuum 151 197
[12] Nabapure D 2021 J. Comput. Sci.neth. 49 101276.
[13] Wu L, Reese J M, Zhang Y. 2014 J. Fluid Mech. 748 350
[14] Ogata Y, Kawaguchi T 2011 J. Fluid Sci. Technol. 6 215
[15] Palharini R C, Scanlon T J, White C 2018 Comput. Fluids 165 173
[16] Yang W Q, Tang S, Yang H 2019 Appl. Sci. 9 2733
[17] Dan X D,Wang M R 2013 J. Eng. Thermophys. 34 2159 (in Chinese)[单小东,王沫然2013工程热物理学报 34 2159]
[18] Zhang S,Fang S Z,Xu Y 2021 J. Propul. Technol. 42 2002 (in Chinese)[张帅,方蜀州,许阳 2021 推进技术 42 2002]
[19] Zhang J, Yao S Q, Fei F, Ghalambaz M, Wen D S 2020 Phys. Fluids 32 102001
[20] Moghadam E Y, Roohi E, Esfahani J A 2014 Vacuum 109 333
[21] Yamaguchi H, Perrier P, Ho M T, Méolans J G, Niimi T, Graur I 2016 J. Fluid Mech. 795 690
[22] Barbera E, Brini F. 2018 Europhys. Lett. 120 34001
[23] Akhlaghi H, Roohi E, Stefanov S 2018 Sci. Rep. 8 13533
[24] Han Y L 2010 Fluid Dyn. Res. 42 045505
[25] Zhu M B, Roohi E, Ebrahimi A 2023 Phys. Fluids 35 052012
[26] Roohi E, Shahabi V, Bagherzadeh A 2018 Int. J. Therm. Sci. 125 381
[27] Wang P, Zhu L H, Su W,Wu L,Zhang Y H 2018 Phys. Rev. E 97 043103
[28] Zhu L H, Guo Z L, Xu K. 2016 Comput. Fluids 127 211
[29] Wang X W, Su T Y, Zhang W Q, Zhang Z J,Zhang S W 2020 Microsyst. Nanoeng. 6 26
[30] Zhang B H,Zheng L 2020 Acta Phys. Sin. 69 152 (in Chinese) [张贝豪 郑林 2020物理学报 69 152]
[31] Ou Y, Qu F, Wang G Y, Nie M Y, Li Z G,Ou W, Xie C Q 2016 Appl. Phys. Lett. 109 023512
[32] Wan Q K,Zhang Y,Guo Z L 2023 J. Chin. J. Comput. Phys. 40 653 (in Chinese)[万启坤,张月,郭照立 2023计算物理40 653]
[33] Kalempa D, Sharipov F, Silva J C 2019 Vacuum 159 82
[34] Bargatin I, Kozinsky I, Roukes M L 2007 Appl. Phys. Lett. 90 093116
[35] Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead H G. 2005 Nano Lett. 5 925
[36] Juvé V, Crut A, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F 2010 Nano lett. 10 1853
[37] Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313
[38] Sun X M,Yao Z H,Yang J L 2002 Acta Phys. Sin. 51 1942 (in Chinese) [孙喜明,姚朝晖,杨京龙 2002 物理学报 51 1942]
[39] Sun J K,Lin C D,Su X L,Tan Z C,Chen Y L,Ming P J 2024 Acta Phys. Sin. 73 40 (in Chinese) [孙佳坤,林传栋,苏咸利,谭志城, 陈亚楼, 明平剑 2024物理学报73 40]
[40] Huang J C, Xu K, Yu P. 2013 Commun. Comput. Phys. 14 1147
[41] Wang Y, Zhong C W, Liu S 2019 Phys. Rev. E 100 063310
[42] Zhu L H, Chen S Z, Guo Z L. 2017 Comput. Phys. Commun. 213 155
[43] Vargas M, Tatsios G, Valougeorgis D, Stefanov S 2014 Phys. Fluids 26 057101
计量
- 文章访问数: 79
- PDF下载量: 5
- 被引次数: 0