搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面质量引射气体性质对高超声速边界层稳定性的影响

马硕鹏 朱海益 韩宇峰

引用本文:
Citation:

壁面质量引射气体性质对高超声速边界层稳定性的影响

马硕鹏, 朱海益, 韩宇峰

Effects of wall-injected gas properties on hypersonic boundary layer instability

MA Shuopeng, ZHU Haiyi, HAN Yufeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 质量引射会对高超声速边界层稳定性和转捩产生显著影响. 本文采用多组分Navier-Stokes求解器, 计算了不同气体质量引射的流场, 在此基础上分析了质量引射对流动稳定性的影响, 区分了引射气体不同性质的作用. 研究表明, 质量引射排挤主流流体, 形成引射层, 令边界层变厚, 显著降低壁面摩阻和热流. 引射气体的黏性系数、相对分子质量及扩散作用主要影响边界层厚度, 而热传导系数和比热容则主要影响温度分布. 线性稳定性分析结果表明, 质量引射激发多个高阶模态失稳, 但第二模态仍起主导作用, 且质量引射减小第二模态失稳区域, 令扰动积分幅值显著减小, 进而抑制转捩. 引射气体性质的变化通过两条路径影响稳定性: 1)改变基本流剖面; 2)改变混合气体性质. 其中引射气体的输运系数(黏性、扩散)主要通过路径一改变失稳特征, 比热容主要通过路径二起作用, 相对分子质量则通过双路径共同作用.
    Active mass injection is an effective thermal protection technique that can significantly reduce wall heat flux. However, it inherently changes the stability characteristics of boundary layer, substantially affecting the laminar-to-turbulent transition process. Crucially, the underlying mechanisms of controlling how different injected gases regulate flow stability are still unclear. In order to systematically analyze the effects of different gas injections on flow stability, the gas-specific mass injection effects are investigated in this work by employing a multicomponent Navier-Stokes solver to compute flow fields with air, argon, and nitrogen injections. The influence of mass injection on flow stability is analyzed using linear stability theory, followed by distinguishing the different effects of various injectant properties. The result shows that mass injection can displace the freestream gas, forming an injection layer near the wall and increasing the thickness of the boundary layer. Herein, the properties of the main boundary layer are still similar to those of the original boundary layer, while the injection layer exhibits significantly reduced temperature and velocity gradients, resulting in decrease of wall heat flux and surface friction. Linear stability analysis reveals that when mass injection excites multiple higher-order instability modes, the second mode is still dominant. Notably, mass injection reduces the unstable region of the second mode and significantly lowers the integrated disturbance amplitude, thereby suppressing the transition. This stabilizing effect is more pronounced with lighter gases. The differences in injected gas properties are mainly reflected in the viscosity coefficient, thermal conductivity, relative molecular weight, and diffusivity. Among these, the boundary layer thickness is primarily affected by the viscosity coefficient, relative molecular weight, and diffusivity of the injected gas, while the temperature within the boundary layer decreases with the increase of thermal conductivity and specific heat capacity of the injected gas. The influence of injected gas properties on flow stability is manifested in two different ways: 1) modification of basic flow profile and 2) change of mixed gas properties. Specifically, the transport coefficients (viscosity and diffusivity) of the injected gas mainly affect unstable characteristics through way 1), while the specific heat capacity mainly works through way 2). The relative molecular weight plays a combined role in the two ways.
  • 图 1  混合气体模型下基本流程序验证 (a) 空气质量引射; (b) 氩气质量引射

    Fig. 1.  Validation of the base flow program under the mixed gas model: (a) Air mass injection; (b) argon mass injection.

    图 2  LST程序验证 (a) 混合气体模型; (b) 热化学非平衡模型

    Fig. 2.  LST program validation: (a) Mixed gas model; (b) thermochemical non-equilibrium model.

    图 3  (a) 钝锥模型示意图; (b) 网格示意图

    Fig. 3.  (a) Blunt cone model schematic; (b) computational grid schematic.

    图 4  质量流率沿流向分布

    Fig. 4.  Mass flux distribution over the length of the cone.

    图 5  网格无关性验证 (a) 基本流剖面; (b) 稳定性分析结果

    Fig. 5.  Grid independence verification: (a) Base flow profiles; (b) stability analysis results.

    图 6  质量引射对基本流场的影响 (a) 空气质量引射流场云图; (b) 引射区域流场云图

    Fig. 6.  (a) Flow field contours for air mass injection; (b) flow field contours in the injection region.

    图 7  不同气体质量引射壁面量对比 (a) 壁面法向速度; (b) 壁面压力; (c) 引射气体的壁面质量分数

    Fig. 7.  Comparison of wall quantities for mass injection of different gases: (a) Wall normal velocity; (b) wall pressure; (c) wall mass fraction of the injected gas.

    图 8  x = 508 mm处不同气体质量引射的温度 (a) 流向速度 (b) 法向速度 (c) 引射气体质量分数 (d) 剖面比较

    Fig. 8.  Comparison of profiles at x = 508 mm for mass injection of different gases: (a) Temperature; (b) streamwise velocity; (c) normal velocity; (d) mass fraction of the injected gas.

    图 9  不同气体质量引射的边界层厚度 (a) 边界层厚度$ \delta $; (b) 引射层厚度$ {\delta _{ {\text{inj}}}} $; (c) 主流边界层厚度$ {\delta _{ {\text{mf}}}} $对比

    Fig. 9.  Comparison under different injection conditions: (a) Boundary layer thickness $ \delta $; (b) injection layer thickness $ {\delta _{ {\text{inj}}}} $; (c) mainstream boundary layer thickness $ {\delta _{ {\text{mf}}}} $.

    图 10  不同引射条件下的(a) 壁面摩阻和(b) 壁面热流对比

    Fig. 10.  Comparison under different injection conditions: (a) Wall friction; (b) wall heat flux.

    图 11  不同引射条件下的中性曲线对比

    Fig. 11.  Comparison of neutral curves under different injection conditions.

    图 12  $ \omega = 2.4 $时 (a) 扰动增长率沿流向变化; (b) 相速度沿流向变化; (c) N值曲线对比

    Fig. 12.  For $ \omega = 2.4 $: (a) Variation of disturbance growth rate along the streamwise direction; (b) variation of phase velocity along the streamwise direction; (c) N-factor curve.

    图 13  $ \omega = 2.4 $时空气质量引射下 (a) 第二模态的特征函数; (b) 高阶模态的特征函数

    Fig. 13.  Air mass injection for $ \omega = 2.4 $: (a) Eigenfunctions of the second mode; (b) eigenfunctions of higher-order mode.

    图 14  $ \omega = 1.5 $时时空气质量引射下 (a) 扰动增长率沿流向变化; (b) 相速度沿流向变化; (c) N值曲线对比

    Fig. 14.  Air mass injection for $ \omega = 1.5 $: (a) Variation of disturbance growth rate along the streamwise direction; (b) variation of phase velocity along the streamwise direction; (c) N-factor curve.

    图 15  不同引射条件下的N因子包络线对比

    Fig. 15.  Comparison of N-factor envelopes under different injection conditions.

    图 16  引射气体的黏性系数、热传导系数对基本流的影响 (a) 壁面速度; (b) 壁面密度

    Fig. 16.  Effect of viscosity and thermal conductivity of the injected gas on the base flow: (a) Wall velocity; (b) wall density.

    图 17  引射气体的黏性系数、热传导系数对基本流的影响 (a) 法向速度剖面; (b) 密度剖面; (c) 温度剖面

    Fig. 17.  Effect of viscosity and thermal conductivity of the injected gas on the base flow: (a) Normal velocity profile; (b) density profile; (c) temperature profile.

    图 18  引射气体的黏性系数、热传导系数对基本流的影响 (a) 边界层厚度$ \delta $; (b) 引射层厚度$ {\delta _{{\text{inj}}}} $; (c) 主流边界层厚度$ {\delta _{{\text{mf}}}} $

    Fig. 18.  Effect of viscosity and thermal conductivity of the injected gas on the base flow: (a) Boundary layer thickness $ \delta $; (b) injection layer thickness $ {\delta _{{\text{inj}}}} $; (c) mainstream boundary layer thickness $ {\delta _{{\text{mf}}}} $.

    图 19  引射气体的黏性系数、热传导系数对流动稳定性的影响 (a) 中性曲线对比; (b) 混合气体模型下不同流向位置的增长率随频率变化; (c) 完全气体模型下不同流向位置的增长率随频率变化

    Fig. 19.  Effect of viscosity and thermal conductivity of the injected gas on flow stability: (a) Comparison of neutral curves; (b) variation of growth rate with frequency at different streamwise positions under the mixed gas model; (c) variation of growth rate with frequency at different streamwise positions under the perfect gas model.

    图 20  引射气体的相对分子质量对基本流的影响 (a) 壁面速度; (b) 壁面密度

    Fig. 20.  Effect of the relative molecular mass of the injected gas on the base flow: (a) Wall velocity; (b) wall density.

    图 21  引射气体的相对分子质量对基本流的影响 (a) 法向速度剖面; (b) 密度剖面; (c) 温度剖面

    Fig. 21.  Effect of the relative molecular mass of the injected gas on the base flow: (a) Normal velocity profile; (b) density profile; (c) temperature profile.

    图 22  引射气体的相对分子质量对基本流的影响 (a) 边界层厚度$ \delta $; (b) 引射层厚度$ {\delta _{ {\text{inj}}}} $; (c) 主流边界层厚度$ {\delta _{ {\text{mf}}}} $

    Fig. 22.  Effect of the relative molecular mass of the injected gas on the flow stability: (a) Boundary layer thickness $ \delta $; (b) injection layer thickness $ {\delta _{ {\text{inj}}}} $; (c) mainstream boundary layer thickness $ {\delta _{ {\text{mf}}}} $.

    图 23  引射气体的相对分子质量对流动稳定性的影响 (a) 中性曲线对比; (b) 混合气体模型下不同流向位置的增长率随频率变化; (c) 完全气体模型下不同流向位置的增长率随频率变化

    Fig. 23.  Effect of the relative molecular mass of the injected gas on flow stability: (a) Comparison of neutral curves; (b) variation of growth rate with frequency at different streamwise positions under the mixed gas model; (c) variation of growth rate with frequency at different streamwise positions under the perfect gas model.

    图 24  引射气体的比热容对基本流的影响 (a) 壁面速度; (b) 壁面密度

    Fig. 24.  Effect of the specific heat capacity of the injected gas on the base flow: (a) Wall velocity; (b) wall density.

    图 25  引射气体的比热容对基本流的影响 (a) 法向速度剖面; (b) 密度剖面; (c) 温度剖面

    Fig. 25.  Effect of the specific heat capacity of the injected gas on the base flow: (a) Normal velocity profile; (b) density profile; (c) temperature profile.

    图 26  引射气体的比热容对流动稳定性的影响 (a) 中性曲线对比; (b) 混合气体模型下不同流向位置的增长率随频率变化; (c) 完全气体模型下不同流向位置的增长率随频率变化

    Fig. 26.  Effect of the specific heat capacity of the injected gas on flow stability: (a) Comparison of neutral curves; (b) variation of growth rate with frequency at different streamwise positions under the mixed gas model; (c) variation of growth rate with frequency at different streamwise positions under the perfect gas model.

    图 27  引射气体的扩散作用对基本流的影响 (a) 壁面速度; (b) 壁面密度

    Fig. 27.  Effect of the diffusion of the injected gas on the base flow: (a) Wall velocity; (b) wall density.

    图 28  引射气体的扩散作用对基本流的影响 (a) 引射气体质量分数剖面; (b) 温度剖面

    Fig. 28.  Effect of the diffusion of the injected gas on the base flow: (a) Mass fraction profile of the injected gas; (b) temperature profile.

    图 29  引射气体的扩散作用对基本流的影响 (a) 边界层厚度$ \delta $; (b) 引射层厚度$ {\delta _{{\text{inj}}}} $; (c)主流边界层厚度$ {\delta _{{\text{mf}}}} $

    Fig. 29.  Effect of the diffusion of the injected gas on the base flow: (a) Boundary layer thickness $ \delta $; (b) injection layer thickness $ {\delta _{{\text{inj}}}} $; (c) mainstream boundary layer thickness $ {\delta _{{\text{mf}}}} $.

    图 30  引射气体的扩散作用对流动稳定性的影响 (a) 中性曲线对比; (b) 混合气体模型下不同流向位置的增长率随频率变化; (c) 完全气体模型下不同流向位置的增长率随频率变化

    Fig. 30.  Effect of the diffusion of the injected gas on flow stability: (a) Comparison of neutral curves; (b) variation of growth rate with frequency at different streamwise positions under the mixed gas model; (c) variation of growth rate with frequency at different streamwise positions under the perfect gas model.

    表 1  各组分黏性系数[23]

    Table 1.  Species viscosity coefficient[23].

    i $ {\mu _{{\text{ref}}i}} $/(kg·m–1·s–1) $ {S_{\mu i}} $/K $ {T_{{\text{ref}}i}} $/K
    Ar 2.117×10–5 146.3 273.16
    N2 1.656×10–5 104.7 273.16
    O2 1.919×10–5 125 273.16
    下载: 导出CSV

    表 2  引射气体性质

    Table 2.  Properties of the injected gas.

    引射气体 黏性系数 热传导系数 相对分子质量 比热容 扩散作用
    Ar 不变 不变 40 $ \dfrac{3}{2}{R_{{\text{Ar}}}} $ 不变
    Ar(μ*) $ \mu $下降, $ {\mu _{{\text{Ar}}\left( {\mu^*} \right)}} = {\mu _{{{\text{N}}_{2}}}} = 1.656 \times {10^{ - 5}}{\left(\dfrac{T}{{273.16}}\right)^{3/2}}\left(\dfrac{{273.16 + 104.7}}{{T + 104.7}}\right) $
    Ar(k*) $ k $下降, $ {\kappa _{{\text{Ar}}\left( {k^*} \right)}} = {\kappa _{{{\text{N}}_{2}}}} = 1.656 \times {10^{ - 5}}{\left(\dfrac{T}{{273.16}}\right)^{3/2}}\left(\dfrac{{273.16 + 104.7}}{{T + 104.7}}\right)\left(\dfrac{5}{2}c_{{\text{v, tra}}}^{{\text{Ar}}} + c_{{\text{v, tor}}}^{{\text{Ar}}}\right) $
    Ar(M*) $ M $下降, $ {M_{{\text{Ar}}\left( {M^*} \right)}} = {M_{{{\text{N}}_{2}}}} = {28} $
    Ar(Cv*) $ {\text{Cv}} $上升, $ C_{\text{v},\text{Ar}\left( {C_{\text{v}}^*} \right)}= C_{\text{v},\text{N}_{2}} = \dfrac{5}{2}{R_{{\text{Ar}}}} $
    Ar(D*) $ {D_{{\text{Ar}}\left( {D^*} \right)}} \to {0} $
    下载: 导出CSV

    表 3  气体性质对流动稳定性的作用路径

    Table 3.  The pathway of gas properties on flow stability.

    作用路径 主要影响
    因素
    对第二模态影响
    改变边界
    层剖面
    相对分子
    质量
    相对分子质量增大, 边界层厚度降低,
    不稳定频率增大、最大增长率增大
    黏性系数 黏性系数增大, 边界层厚度降低,
    不稳定频率增大、最大增长率降低
    扩散 扩散作用导致边界层厚度增大,
    不稳定频率降低
    改变混合
    气体性质
    相对分子
    质量
    相对分子质量增大, 不稳定频率降低
    比热容 比热容增大, 不稳定频率降低、
    最大增长率增大
    下载: 导出CSV
  • [1]

    朱广生, 姚世勇, 段毅 2023 航空学报 44 529049

    Zhu G S, Yao S Y, Duan Y 2023 Acta Aeronaut. Astronaut. Sin. 44 529049

    [2]

    温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐 2025 物理学报 74 124701Google Scholar

    Wen J H, Li C H, Tu G H, Wan B B, Duan M C, Zhang R 2025 Acta Phys. Sin. 74 124701Google Scholar

    [3]

    沈斌贤, 曾磊, 刘骁, 周述光, 葛强 2022 空气动力学报学报 40 1

    Shen X B, Zeng L, Liu X, Zhou S G, Ge Q 2022 Acta Aerodyn. Sin. 40 1

    [4]

    樊宇翔, 赵瑞, 左政玄, 阳光, 李宁 2023 航空学报 44 528587

    Fan Y X, Zhao R, Zuo Z X, Yang G, Li N 2023 Acta Aeronaut. Astronaut. Sin. 44 528587

    [5]

    叶友达 2015 科学通报 60 1095

    Ye Y D 2015 Sci. Bull. 60 1095

    [6]

    赵一朴 2022 博士学位论文 (北京: 北京交通大学)

    Zhao Y P 2022 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [7]

    Pappas C C, Okuno A F 1960 J. Aerosp. Sci. 27 321

    [8]

    Marvin J G, Akin C M 1970 AIAA J. 8 857Google Scholar

    [9]

    Wang X, Zhong X, Ma Y 2011 AIAA J. 49 1336Google Scholar

    [10]

    赵耕夫 1994 力学学报 26 631

    Zhao G F 1994 Chin. J. Theor. Appl. Mech. 26 631

    [11]

    赵耕夫 1999 空气动力学学报 17 21

    Zhao G F 1999 Acta Aerodyn. Sin. 17 21

    [12]

    Johnson H B, Gronvall J E, Candler G V 2009 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition Orlando, Florida, January 5, 2009 p938

    [13]

    Ghaffari S, Marxen O, Gianluca I, Eric S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4, 2010 p706

    [14]

    李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280

    Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280

    [15]

    Kumar C, Prakash A 2022 Phys. Fluids 34 064109Google Scholar

    [16]

    Li F, Choudhari M, Chang C, White J 2013 Phys. Fluids 25 104107Google Scholar

    [17]

    Wagnild R M, Candler G V, Leyva L A, Jewell J S, Hornung H G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4, 2010 p1244

    [18]

    Lysenko V I, Gaponov S A, Smorodsky B V, Yermolaev Y G, Kosinov A D, Semionov N V 2016 J. Fluid Mech. 798 751Google Scholar

    [19]

    Lysenko V I, Smorodsky B V, Ermolaev Y G, Kosinov A D 2018 Thermophys. Aeromech. 25 183Google Scholar

    [20]

    Gaponov S A, Smorodsky B V 2016 Int. J. Theor. Appl. Mech. 1 97

    [21]

    Gaponov S A, Smorodsky B V 2017 AIP Conference Proceedings. Novosibirsk, Russia, 1893 030087

    [22]

    Miró Miró F, Pinna F 2018 Phys. Fluids 30 084106Google Scholar

    [23]

    Miró Miró F, Pinna F 2020 J. Fluid Mech. 890 R4Google Scholar

    [24]

    Han L B, Han Y F 2024 Phys. Fluids 36 036110Google Scholar

    [25]

    苏彩虹 周恒 2009 中国科学(G辑) 39 123

    Su C H, Zhou H 2009 Sci. China Ser. G 39 123

    [26]

    罗纪生 2015 航空学报 36 357

    Luo J S 2015 Acta Aeronaut. Astronaut. Sin. 36 357

    [27]

    苏彩虹 2008 博士学位论文 (天津: 天津大学)

    Su C H 2008 Ph. D. Dissertation (Tianjin: Tianjin University

    [28]

    Mortensen C H 2015 Ph. D. Dissertation (Los Angeles: University of California

    [29]

    Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567Google Scholar

    [30]

    Fedorov A, Tumin A 2011 AIAA J. 49 1647Google Scholar

  • [1] 温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐. 高温化学非平衡与表面微孔隙效应对边界层稳定性影响. 物理学报, doi: 10.7498/aps.74.20250269
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, doi: 10.7498/aps.73.20240128
    [3] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报, doi: 10.7498/aps.73.20240713
    [4] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, doi: 10.7498/aps.73.20240369
    [5] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, doi: 10.7498/aps.70.20210807
    [6] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, doi: 10.7498/aps.70.20201777
    [7] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, doi: 10.7498/aps.69.20200216
    [8] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, doi: 10.7498/aps.69.20200748
    [9] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, doi: 10.7498/aps.69.20191155
    [10] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, doi: 10.7498/aps.67.20180531
    [11] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, doi: 10.7498/aps.67.20181192
    [12] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, doi: 10.7498/aps.66.244201
    [13] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, doi: 10.7498/aps.66.024701
    [14] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, doi: 10.7498/aps.66.234701
    [15] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究. 物理学报, doi: 10.7498/aps.65.166801
    [16] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, doi: 10.7498/aps.64.014704
    [17] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, doi: 10.7498/aps.58.8426
    [18] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, doi: 10.7498/aps.41.2016
    [19] 黄朝松, 吴颖. 热电子等离子体低频不稳定性的非线性理论. 物理学报, doi: 10.7498/aps.39.61
    [20] 柯孚久, 陈雁萍, 周玉美, 吴京生. 电磁迴旋不稳定性的准线性理论. 物理学报, doi: 10.7498/aps.30.1438
计量
  • 文章访问数:  238
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-25
  • 修回日期:  2025-06-11
  • 上网日期:  2025-07-08

/

返回文章
返回