搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速湍流边界层密度脉动小波分析

张博 何霖 易仕和

引用本文:
Citation:

超声速湍流边界层密度脉动小波分析

张博, 何霖, 易仕和

Wavelet analysis of density fluctuation in supersonic turbulent boundary layer

Zhang Bo, He Lin, Yi Shi-He
PDF
HTML
导出引用
  • 以基于纳米示踪平面激光散射技术的密度场测量方法获得的Ma = 3.0平板湍流边界层密度场实验数据为基础, 采用小波方法对湍流边界层密度脉动进行了多尺度与动态特性分析. 研究表明, 近壁区密度脉动概率密度呈偏离高斯分布, 大尺度分量对湍流边界层密度脉动起主导作用, 小尺度分量使概率密度呈“M”型分布; 采用希尔伯特变换对幅度调制效应进行分析, 结果表明超声速湍流边界层近壁处外层大尺度密度偏移会导致内层小尺度密度脉动的局部增强或减弱; 采用基于小波变换的时变谱密度估计对边界层不同高度的密度脉动进行分析, 结果表明脉动主要分布在1 MHz以内, 主导频段的密度脉动间歇性明显; 随着时间的发展, 大部分脉动存在频率从高频过渡到低频, 幅值先增加后减少的规律; 随着高度的增加, 对数区脉动主要分布在105 Hz以下, 尾迹区则集中在105 Hz以上, 边界层与主流交界处的脉动主要分布在两者相互作用形成的大尺度结构附近, 脉动能量从近壁面到主流区呈现先升高后降低的变化规律.
    In order to obtain the time-varying information and dynamic characteristics of density fluctuation in compressible turbulence, the wavelet method is used to analyze the flow density field of zero-pressure-gradient flat plate turbulent boundary layer at Ma = 3.0, which is measured based on Nano-tracer plane laser scattering technique. Utilizing Taylor’s frozen hypothesis, the spatial signal of density field converts into the temporal signal. The one-dimensional orthogonal wavelet multi-resolution analysis is used to reveal multi-scale turbulent structures, and the results suggest that large-scale structures play a leading role in the density fluctuation of turbulent boundary layer while the small-scale structures make the probability density function (PDF) of density fluctuation manifested as an “M” distribution. The density fluctuation scalar PDF deviates from Gaussian distribution. The Hilbert transformation is used to analyze amplitude modulation effects between large- and small-scale structure, and the results suggest that positive (negative) large scale density excursion in the outer layer induces local enhancement (suppression) of the small scale density fluctuation in the inner layer near the wall. The time-varying spectral density estimation method based on the wavelet transform is used to analyze the density fluctuation at different heights of turbulent boundary layer after proving its viability in time and frequency domain. The results suggest a wide range of frequencies throughout the turbulent boundary layer, mainly distributed within 1 MHz. The density fluctuation in the dominant frequency band is intermittent, most of which transits from high frequency to low frequency while the spectral density first increases and then decreases. Near the wall, the time-frequency distributions of density fluctuation in the logarithmic layer are similar. In the middle part of the turbulent boundary layer, the frequency distribution and spectral density of the density fluctuation each reach a peak. Near the mainstream region, the spectral density decreases obviously, which is mainly distributed near the structure formed by the interaction between the boundary layer and mainstream. The wall constraint, viscous dissipation, and uniform mainstream make the fluctuation nearby the region relatively weak. As a result, the spectrum amplitude of density fluctuation first increases and then decreases from the wall to the mainstream.
      通信作者: 何霖, helin_nudt@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 91752102)和长沙市杰出创新青年项目(批准号: KQ1802031)资助的课题
      Corresponding author: He Lin, helin_nudt@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91752102) and the Excellent Innovation Young Project of Changsha, China (Grant No. KQ1802031)
    [1]

    Lee C B, Jiang X Y 2019 Phys. Fluids 31 111301Google Scholar

    [2]

    Pan L B, Padoan P, Nordlund A 2018 Astrophys. J. Lett. 866 L17Google Scholar

    [3]

    Pan L B, Padoan P, Nordlund A 2019 Astrophys. J. 881 155Google Scholar

    [4]

    王正魁, 靳旭红, 朱志斌, 程晓丽 2018 航空学报 39 122244Google Scholar

    Wang Z K, Jin X H, Zhu Z B, Cheng X L 2018 Acta Aeronaut. Astronaut. Sin. 39 122244Google Scholar

    [5]

    Tian Y F, Jaberi F A, Livescu D 2019 J. Fluid Mech. 880 935Google Scholar

    [6]

    Parziale N, Shepherd J, Hornung H 2015 J. Fluid Mech. 781 87Google Scholar

    [7]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar

    [8]

    何霖, 易仕和, 陆小革 2017 物理学报 66 024701Google Scholar

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar

    [9]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357Google Scholar

    [10]

    Morkovin M V 1962 Mécanique de la Turbulence 367 380

    [11]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar

    [12]

    Smith T R, Moehlis J, Holmes P 2005 Nonlinear Dyn. 41 275Google Scholar

    [13]

    Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar

    [14]

    Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comput. Fluid Dyn. 25 249Google Scholar

    [15]

    Ruppert-Felsot J, Farge M, Petitjeans P 2009 J. Fluid Mech. 636 427Google Scholar

    [16]

    赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 计算科学 53 584Google Scholar

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China Ser. E: Technol. Sci. 53 584Google Scholar

    [17]

    Rinoshika A, Omori H 2011 Exp. Therm. Fluid Sci. 35 1231Google Scholar

    [18]

    Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702Google Scholar

    [19]

    Freund A, Ferrante A 2019 J. Fluid Mech. 875 914Google Scholar

    [20]

    赵玉新, 易仕和, 何霖, 田立丰 2010 科学通报 55 2004Google Scholar

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004Google Scholar

    [21]

    Chen Z, Yi S H, He L, Zhu Y Z, Ge Y, Wu Y 2014 J. Visualization 17 345Google Scholar

    [22]

    Liu X L, Yi S h, Xu X W, Shi Y, Ouyang T C, Xiong H X 2019 Phys. Fluids 31 074108Google Scholar

    [23]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China, Ser. G 54 1702Google Scholar

    [24]

    Taylor G I 1938 Proc. R. Soc. London, Ser. A 164 476Google Scholar

    [25]

    Rinoshika A, Zhou Y 2005 J. Fluid Mech. 524 229Google Scholar

    [26]

    Van Doorne C, Westerweel J 2007 Exp. Fluids 42 259Google Scholar

    [27]

    Ganapathisubramani B, Lakshminarasimhan K, Clemens N T 2007 Exp. Fluids 42 923Google Scholar

    [28]

    Vétel J, Garon A, Pelletier D 2010 Exp. Fluids 48 441Google Scholar

    [29]

    曹晖, 赖明, 白绍良 2004 工程力学 21 109Google Scholar

    Cao H, Lai M, Bai S L 2004 Eng. Mech. 21 109Google Scholar

    [30]

    Spanos P D, Failla G 2004 J. Eng. Mech. 130 952Google Scholar

    [31]

    Mouri H, Kubotani H, Fujitani T, Niino H, Takaoka M 1999 J. Fluid Mech. 389 229Google Scholar

    [32]

    Mallat S G 1989 IEEE Trans. Pattern Anal. Mach. Intell. 11 674Google Scholar

    [33]

    Rinoshika A, Watanabe S 2010 Exp. Therm. Fluid Sci. 34 1389Google Scholar

    [34]

    Hutchins N, Marusic I 2007 Philos. Trans. R. Soc. London, Ser. A 365 647Google Scholar

    [35]

    Mathis R, Hutchins N, Marusic I 2009 J. Fluid Mech. 628 311Google Scholar

    [36]

    Mathis R, Monty J P, Hutchins N, Marusic I 2009 Phys. Fluids 21 111703Google Scholar

    [37]

    He G S, Pan C, Feng L H, Gao Q, Wang J J 2016 J. Fluid Mech. 792 274Google Scholar

    [38]

    He G S, Wang J J, Rinoshika A 2019 Phys. Rev. E 99 053105Google Scholar

    [39]

    Gurley K, Kareem A 1999 Eng. Struct. 21 149Google Scholar

    [40]

    白泉, 边晶梅, 康玉梅 2018 小波理论在工程结构振动分析中的应用 (北京: 清华大学出版社) 第32−49页

    Bai Q, Bian J M, Kang Y M 2018 Application of Wavelet Theory in Vibration Analysis of Engineering structures (Beijing: Tsinghua Univesity Press) pp32−49 (in Chinese)

    [41]

    何霖 2011 博士学位论文 (长沙: 国防科学技术大学)

    He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [42]

    Eswaran V, Pope S 1988 Phys. Fluids 31 506Google Scholar

    [43]

    Antonia R A, Mi J 1993 J. Fluid Mech. 250 531Google Scholar

  • 图 1  Meyer小波频域定义与时域波形

    Fig. 1.  Meyer wavelet in frequency and time domain.

    图 2  时频域有效性验证 (a) 密度脉动累积能量曲线; (b) 密度脉动功率谱估计

    Fig. 2.  Verification in time and frequency domain: (a) Husid of density wave; (b) power spectral density (PSD) of density fluctuation.

    图 3  $Ma$ = 3.0湍流边界层流向剖面 (a) 瞬态密度场; (b) 瞬态密度脉动

    Fig. 3.  Flow profile of turbulent boundary layer at $Ma$ = 3.0: (a) Instantaneous density field; (b) instantaneous density fluctuation.

    图 4  密度脉动时间分布曲线($y/\delta $ = 0.1)

    Fig. 4.  Time distribution curve of density fluctuation ($y/\delta $ = 0.1).

    图 5  密度脉动信号多分辨率分析 (a)−(f) Level 1−Level 6代表组成原始信号6个不同尺度的分量

    Fig. 5.  Multiresolution analysis of density fluctuation signal: (a)−(f) Level 1−Level 6 represent 6 different sacles’s components of original signal.

    图 6  原始信号和Level 1 + Level 2的概率密度函数

    Fig. 6.  Probability density function (PDF) of the original signal of density fluctuation and Level 1 + Level 2.

    图 7  幅度调制效应分析 (a) 大尺度分量${d_{\rm{L}}}$与小尺度分量${d_{\rm{S}}}$; (b) 小尺度分量${d_{\rm{S}}}$与低通滤波包络${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$; (c) 大尺度分量${d_{\rm{L}}}$与低通滤波包络${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$(为方便比较, 将${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$平均值调整到0线并放大2倍)

    Fig. 7.  Analysis of amplitude modulation effects: (a) Large scale component ${d_{\rm{L}}}$ and small scale component ${d_{\rm{S}}}$; (b) small scale component ${d_{\rm{S}}}$ and low-pass filtered envelope ${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$; (c) comparison between large scale component ${d_{\rm{L}}}$ and low-pass filtered envelope ${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$(for comparison, adjust the average of ${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ to the zero-line and magnify the magnitude by a factor of 2).

    图 8  密度脉动的谱分析($y/\delta $ = 0.1) (a) 基于傅里叶变换的功率谱密度估计; (b) 基于小波变换的时变谱密度估计

    Fig. 8.  Spectrum analysis of density fluctuation ($y/\delta $ = 0.1): (a) Power spectrum based on Fourier transform; (b) time-varying power spectrum based on wavelet transform.

    图 9  相近频率的时变谱密度 (a) (60 ± 3) kHz; (b) (113 ± 5) kHz

    Fig. 9.  Time-varying power spectrum of approximate frequency: (a) (60 ± 3) kHz; (b) (113 ± 5) kHz.

    图 10  不同高度的密度脉动时变谱 (a) $y/\delta $ = 0.4; (b) $y/\delta $ = 0.7; (c) $y/\delta $ = 1.0

    Fig. 10.  Time-varying power spectrum of density fluctuation at different heights: (a) $y/\delta $ = 0.4; (b) $y/\delta $ = 0.7; (c) $y/\delta $ = 1.0.

    表 1  风洞流场参数

    Table 1.  Flow conditions

    $M{a_\infty }$${P_0}/{\rm MPa}$${T_0}/{\rm K}$${P_\infty }/{\rm Pa}$${T_\infty }/{\rm K}$${\rho _\infty }/{\rm kg \cdot {m^{ - 3} }}$${U_\infty }/{\rm m \cdot {s^{ - 1} }}$$\mu /{\rm Pa \cdot s}$${R_e}/{\rm m^{ - 1} }$
    3.00.130027501070.089622.57.43 × 10–67.49 × 106
    下载: 导出CSV
  • [1]

    Lee C B, Jiang X Y 2019 Phys. Fluids 31 111301Google Scholar

    [2]

    Pan L B, Padoan P, Nordlund A 2018 Astrophys. J. Lett. 866 L17Google Scholar

    [3]

    Pan L B, Padoan P, Nordlund A 2019 Astrophys. J. 881 155Google Scholar

    [4]

    王正魁, 靳旭红, 朱志斌, 程晓丽 2018 航空学报 39 122244Google Scholar

    Wang Z K, Jin X H, Zhu Z B, Cheng X L 2018 Acta Aeronaut. Astronaut. Sin. 39 122244Google Scholar

    [5]

    Tian Y F, Jaberi F A, Livescu D 2019 J. Fluid Mech. 880 935Google Scholar

    [6]

    Parziale N, Shepherd J, Hornung H 2015 J. Fluid Mech. 781 87Google Scholar

    [7]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar

    [8]

    何霖, 易仕和, 陆小革 2017 物理学报 66 024701Google Scholar

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar

    [9]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357Google Scholar

    [10]

    Morkovin M V 1962 Mécanique de la Turbulence 367 380

    [11]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar

    [12]

    Smith T R, Moehlis J, Holmes P 2005 Nonlinear Dyn. 41 275Google Scholar

    [13]

    Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar

    [14]

    Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comput. Fluid Dyn. 25 249Google Scholar

    [15]

    Ruppert-Felsot J, Farge M, Petitjeans P 2009 J. Fluid Mech. 636 427Google Scholar

    [16]

    赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 计算科学 53 584Google Scholar

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China Ser. E: Technol. Sci. 53 584Google Scholar

    [17]

    Rinoshika A, Omori H 2011 Exp. Therm. Fluid Sci. 35 1231Google Scholar

    [18]

    Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702Google Scholar

    [19]

    Freund A, Ferrante A 2019 J. Fluid Mech. 875 914Google Scholar

    [20]

    赵玉新, 易仕和, 何霖, 田立丰 2010 科学通报 55 2004Google Scholar

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004Google Scholar

    [21]

    Chen Z, Yi S H, He L, Zhu Y Z, Ge Y, Wu Y 2014 J. Visualization 17 345Google Scholar

    [22]

    Liu X L, Yi S h, Xu X W, Shi Y, Ouyang T C, Xiong H X 2019 Phys. Fluids 31 074108Google Scholar

    [23]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China, Ser. G 54 1702Google Scholar

    [24]

    Taylor G I 1938 Proc. R. Soc. London, Ser. A 164 476Google Scholar

    [25]

    Rinoshika A, Zhou Y 2005 J. Fluid Mech. 524 229Google Scholar

    [26]

    Van Doorne C, Westerweel J 2007 Exp. Fluids 42 259Google Scholar

    [27]

    Ganapathisubramani B, Lakshminarasimhan K, Clemens N T 2007 Exp. Fluids 42 923Google Scholar

    [28]

    Vétel J, Garon A, Pelletier D 2010 Exp. Fluids 48 441Google Scholar

    [29]

    曹晖, 赖明, 白绍良 2004 工程力学 21 109Google Scholar

    Cao H, Lai M, Bai S L 2004 Eng. Mech. 21 109Google Scholar

    [30]

    Spanos P D, Failla G 2004 J. Eng. Mech. 130 952Google Scholar

    [31]

    Mouri H, Kubotani H, Fujitani T, Niino H, Takaoka M 1999 J. Fluid Mech. 389 229Google Scholar

    [32]

    Mallat S G 1989 IEEE Trans. Pattern Anal. Mach. Intell. 11 674Google Scholar

    [33]

    Rinoshika A, Watanabe S 2010 Exp. Therm. Fluid Sci. 34 1389Google Scholar

    [34]

    Hutchins N, Marusic I 2007 Philos. Trans. R. Soc. London, Ser. A 365 647Google Scholar

    [35]

    Mathis R, Hutchins N, Marusic I 2009 J. Fluid Mech. 628 311Google Scholar

    [36]

    Mathis R, Monty J P, Hutchins N, Marusic I 2009 Phys. Fluids 21 111703Google Scholar

    [37]

    He G S, Pan C, Feng L H, Gao Q, Wang J J 2016 J. Fluid Mech. 792 274Google Scholar

    [38]

    He G S, Wang J J, Rinoshika A 2019 Phys. Rev. E 99 053105Google Scholar

    [39]

    Gurley K, Kareem A 1999 Eng. Struct. 21 149Google Scholar

    [40]

    白泉, 边晶梅, 康玉梅 2018 小波理论在工程结构振动分析中的应用 (北京: 清华大学出版社) 第32−49页

    Bai Q, Bian J M, Kang Y M 2018 Application of Wavelet Theory in Vibration Analysis of Engineering structures (Beijing: Tsinghua Univesity Press) pp32−49 (in Chinese)

    [41]

    何霖 2011 博士学位论文 (长沙: 国防科学技术大学)

    He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [42]

    Eswaran V, Pope S 1988 Phys. Fluids 31 506Google Scholar

    [43]

    Antonia R A, Mi J 1993 J. Fluid Mech. 250 531Google Scholar

  • [1] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [3] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [4] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [5] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [6] 朱杨柱, 易仕和, 孔小平, 何霖. 带喷流超声速后台阶流场精细结构及其运动特性研究. 物理学报, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [7] 冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究. 物理学报, 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [8] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性. 物理学报, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [9] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [10] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [11] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [12] 符懋敬, 庄建军, 侯凤贞, 宁新宝, 展庆波, 邵毅. 基于小波变换的人体步态序列提取. 物理学报, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [13] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法. 物理学报, 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [14] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [15] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [16] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析. 物理学报, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [17] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [18] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [19] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [20] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
计量
  • 文章访问数:  7379
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-06-18
  • 上网日期:  2020-11-02
  • 刊出日期:  2020-11-05

/

返回文章
返回