搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速平板边界层流动显示的试验研究

付佳 易仕和 王小虎 张庆虎 何霖

引用本文:
Citation:

高超声速平板边界层流动显示的试验研究

付佳, 易仕和, 王小虎, 张庆虎, 何霖

Experimental study on flow visualization of hypersonic flat plate boundary layer

Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin
PDF
导出引用
  • 本文在高超声速脉冲式风洞内对基于纳米示踪的平面激光散射技术(nano-based planar laser scattering, NPLS)的应用进行了探索, 并在此基础上对平板边界层流动结构的精细测量进行了研究. 试验来流Ma=7.3, 总压4.8 MPa, 总温680 K. 通过时序的分析和调试, 对各分系统实现了高精度的同步控制; 定量的粒子注入及混合, 实现了粒子的均匀撒播, 对主流获得了均匀的显示效果; 对于边界层流动, 获得了精细的瞬态流动结构图像, 显示了层流到湍流的转捩过程, 并分析了其时空演化特性.
    The classical problem of flat plate boundary layer which involves turbulence and transition is still hot, and a mass of work should be done to reach a high accuracy measurement of this flow, especially under the condition of high velocity. In the present paper, the application of the nano-based planar laser scattering (NPLS) method in a hypersonic short-duration facility is explored, and then the high accuracy measurement of a flat plate boundary layer is studied. The Mach number of the main flow is 7.3, the total pressure is 4.8 MPa, and the total temperature is 680 K. Through analysis and tests, the synchronization control of the NPLS system with the test facility is realized, and with the quantitative control, the tracer particle is uniformly seeded. Based on this, the transient boundary layer flow in the short-duration tunnel is visualized with high resolution, and the transition from laminar to turbulent flows is captured. The development characteristic of the flow is studied finally.
    • 基金项目: 国家自然科学基金(批准号: 11172326和11302256)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256).
    [1]

    Kline S J, Reynolds W C, Schranb F A, Runstadler P W 1967 J. Fluid Mech. 30 741

    [2]

    Theodorsen T 1952 In: Proceedings of the Second Midwestern Conference on Fluid Mechanics Columbus, USA

    [3]

    Head M R, Bandyopadhyay P R 1981 J. Fluid Mech. 107 297

    [4]

    Smits A J, Spina E F, Alving A E, Smith R W, Fernando E M, Donovan J F 1989 Phys. Fluids 1 1865

    [5]

    Smith M W, Smits A J 1995 Exps. Fluids. 18 288

    [6]

    Smith M W, Smits A J, Miles R B 1988 Opt. Lett. 14 916

    [7]

    Ringuette M J, Wu M, Martin M P 2008 J. Fluid Mech. 594 59

    [8]

    Gao H, Fu D X, Ma Y W, Li X L 2005 Chin. Phys. Lett. 22 1709

    [9]

    Guarini S E, Moser R D, Shariff K, Wray A 2000 J. Fluid Mech. 414 1

    [10]

    Maeder T, Adams N A, Kleiser L J 2001 Fluid Mech. 429 187

    [11]

    Baumgartner M L, Erbland P J, Etz M R, Yalin A, Muzas B K, Smits A J, Lempert W R, Miles R B 1997 35th Aerospace Sciences Meeting & Exhibit Reno, NV 1997

    [12]

    Martin M P 2004 AIAA Paper 2004-2337

    [13]

    Liang X, LI X L 2013 Sci. Sin-Phys. Mech. Astron 56 1408

    [14]

    Forkey J N, Lempert W R, Miles R B 1998 Exps. Fluids. 24 151

    [15]

    Boguszko M, Elliott G S 2005 Exps. Fluids 38 33

    [16]

    Danehy P M, Wilkes J A, Alderfer D W 2006 AIAA Paper 2006-3442

    [17]

    Bathel B F, Danely P M, Inman J A 2008 AIAA Paper 2008-4266

    [18]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [19]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈值, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [20]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chinese Science Bulletin 57 584

    [21]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [22]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chinese Science Bulletin 54 1702

    [23]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chinese Science Bulletin 56 489

  • [1]

    Kline S J, Reynolds W C, Schranb F A, Runstadler P W 1967 J. Fluid Mech. 30 741

    [2]

    Theodorsen T 1952 In: Proceedings of the Second Midwestern Conference on Fluid Mechanics Columbus, USA

    [3]

    Head M R, Bandyopadhyay P R 1981 J. Fluid Mech. 107 297

    [4]

    Smits A J, Spina E F, Alving A E, Smith R W, Fernando E M, Donovan J F 1989 Phys. Fluids 1 1865

    [5]

    Smith M W, Smits A J 1995 Exps. Fluids. 18 288

    [6]

    Smith M W, Smits A J, Miles R B 1988 Opt. Lett. 14 916

    [7]

    Ringuette M J, Wu M, Martin M P 2008 J. Fluid Mech. 594 59

    [8]

    Gao H, Fu D X, Ma Y W, Li X L 2005 Chin. Phys. Lett. 22 1709

    [9]

    Guarini S E, Moser R D, Shariff K, Wray A 2000 J. Fluid Mech. 414 1

    [10]

    Maeder T, Adams N A, Kleiser L J 2001 Fluid Mech. 429 187

    [11]

    Baumgartner M L, Erbland P J, Etz M R, Yalin A, Muzas B K, Smits A J, Lempert W R, Miles R B 1997 35th Aerospace Sciences Meeting & Exhibit Reno, NV 1997

    [12]

    Martin M P 2004 AIAA Paper 2004-2337

    [13]

    Liang X, LI X L 2013 Sci. Sin-Phys. Mech. Astron 56 1408

    [14]

    Forkey J N, Lempert W R, Miles R B 1998 Exps. Fluids. 24 151

    [15]

    Boguszko M, Elliott G S 2005 Exps. Fluids 38 33

    [16]

    Danehy P M, Wilkes J A, Alderfer D W 2006 AIAA Paper 2006-3442

    [17]

    Bathel B F, Danely P M, Inman J A 2008 AIAA Paper 2008-4266

    [18]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [19]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈值, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [20]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chinese Science Bulletin 57 584

    [21]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [22]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chinese Science Bulletin 54 1702

    [23]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chinese Science Bulletin 56 489

  • [1] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [5] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [6] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [7] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [8] 胡立军, 袁海专, 杜玉龙. 一种改进的HLLEM格式及其激波稳定性分析. 物理学报, 2020, 69(13): 134701. doi: 10.7498/aps.69.20191851
    [9] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [10] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [11] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [12] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [13] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [14] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [15] 谢文佳, 李桦, 潘沙, 田正雨. 一类新型激波捕捉格式的耗散性与稳定性分析. 物理学报, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [16] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [17] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究. 物理学报, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [18] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
计量
  • 文章访问数:  5995
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 修回日期:  2014-09-01
  • 刊出日期:  2015-01-05

/

返回文章
返回