-
研究了在垂直结构发光二极管(VLED)器件中, 光致电化学法(PEC)刻蚀N极性n-GaN的速率受不同刻蚀条件(刻蚀浓度、刻蚀时间和光照强度)的影响. 并选择N极性n-GaN表面含有较理想六角金字塔结构(侧壁角为31°)的样品制成器件, 研究PEC刻蚀对VLED的欧姆接触和光电性能的影响. 结果表明, 与未粗化样品相比, PEC刻蚀后的样品接触电阻率明显降低, 形成更好的欧姆接触; 其电学特性有较好的改善, 光输出功率有明显提高, 在20 mA电流下光输出功率增强了86.1%. 对不同金字塔侧壁角度的光提取效率用时域有限差分法(FDTD)模拟, 结果显示光提取效率在侧壁角度为20°– 40°有显著提高, 在23.6° (GaN-空气界面的全反射角)时达到最大.The rate of photo-electro-chemical (PEC) etching on N-polar n-GaN using vertical light emitting diodes (V-LEDs) has been investigated in detail, by varying the etching parameters (etchant concentration, etching duration and light intensity). V-LED with optimal hexagonal pyramid structure (the side-wall angle is 31°) has been fabricated, and then the influence of the PEC etching on the electrical and optical properties of V-LED has been analyzed. After PEC etching, the sample has good ohmic contact with the electrode and has lower contact resistance than a reference sample. The electrical characteristics have a better improvement. And the light output power has improved obviously after PEC etching, which shows 86.1% enhancement at 20 mA. Effect of side-wall angle of the pyramids on light extraction efficiency (LEE) in V-LEDs is theoretically calculated by finite difference time domain (FDTD) method. Simulation results show that the LEE is significantly increased for the sidewall angle between 20° and 40°, and the maximum enhancement is realized at a side-wall angle of 23.6° (the total reflection angle at the GaN/air interface).
-
Keywords:
- etch /
- photo-electro-chemical method /
- n-GaN /
- light extraction efficiency
[1] Park J, Shin M, Lee C C 2004 Opt. Lett. 29 2656
[2] Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S, Seong T Y 2008 Opt. Lett. 33 1273
[3] Zheng C, Zhang S M, Wang H, Liu J P, Wang H B, Li Z C, Feng M X, Zhao D G, Liu Z S, Jiang D S, Yang H 2012 Chin Phys. Lett. 29 017301
[4] Furhmann D, Netzel C, Rossow U, Hangleiter A 2006 Appl. Phys. Lett. 88 071105
[5] Huh C, Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383
[6] Huang H W, Kuo H C, Lai C F, Lee C E, Chiu C W, Lu T C, Wang S C, Lin C H, Leung K M 2007 IEEE Photon. Technol. Lett. 19 565
[7] Zhang S Y, Xiu X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R, Zheng Y D 2014 Chin. Phys. B 23 058101
[8] Jewell J, Simeonov D, Huang S-C, Hu Y-L, Nakamura S, Speck J, Weisbuch C 2012 Appl. Phys. Lett. 100 171105
[9] Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y, Li J M 2014 Chin. Phys. B 23 028504
[10] Shen C F, Chang S J, Chen W S, Ko T K, Kuo C T, Shei S C 2007 IEEE Photon. Technol. Lett. 19 780
[11] Minsky M S, White M, Hu E L 1996 Appl. Phys. Lett. 68 1531
[12] Seo J W, Oh C S, Yang J W, Yang G M, Lim K Y, Yoon C J, Lee H J 2001 Phys. Status Solidi A 188 403
[13] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855
[14] Palacios T, Calle F, Varela M, Ballesteros C, Monroy E, Naranjo F B, Sanchez-Garacia M A, Calleja E, Munoz E 2000 Semicond. Sci. Technol. 15 996
[15] Yu T J (于彤军) 2011 CN 102252829 A
[16] Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Devices 57 79
[17] Wang L C, Ma J, Liu Z Q, Yi X Y, Yuan G D, Wang G H 2013 J. Appl. Phys. 114 133101
[18] Ng H M, Weimann N G, Chowdhury A 2003 J. Appl. Phys. 94 650
[19] Chung R B, Chen H T, Pan C C, Ha J S, DenBaars S P, Nakamura S 2012 Appl. Phys. Lett. 100 091104
[20] Kuo M L, Kim Y S, Hsieh M L, Lin S Y 2011 Nano Lett. 11 476
-
[1] Park J, Shin M, Lee C C 2004 Opt. Lett. 29 2656
[2] Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S, Seong T Y 2008 Opt. Lett. 33 1273
[3] Zheng C, Zhang S M, Wang H, Liu J P, Wang H B, Li Z C, Feng M X, Zhao D G, Liu Z S, Jiang D S, Yang H 2012 Chin Phys. Lett. 29 017301
[4] Furhmann D, Netzel C, Rossow U, Hangleiter A 2006 Appl. Phys. Lett. 88 071105
[5] Huh C, Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383
[6] Huang H W, Kuo H C, Lai C F, Lee C E, Chiu C W, Lu T C, Wang S C, Lin C H, Leung K M 2007 IEEE Photon. Technol. Lett. 19 565
[7] Zhang S Y, Xiu X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R, Zheng Y D 2014 Chin. Phys. B 23 058101
[8] Jewell J, Simeonov D, Huang S-C, Hu Y-L, Nakamura S, Speck J, Weisbuch C 2012 Appl. Phys. Lett. 100 171105
[9] Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y, Li J M 2014 Chin. Phys. B 23 028504
[10] Shen C F, Chang S J, Chen W S, Ko T K, Kuo C T, Shei S C 2007 IEEE Photon. Technol. Lett. 19 780
[11] Minsky M S, White M, Hu E L 1996 Appl. Phys. Lett. 68 1531
[12] Seo J W, Oh C S, Yang J W, Yang G M, Lim K Y, Yoon C J, Lee H J 2001 Phys. Status Solidi A 188 403
[13] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855
[14] Palacios T, Calle F, Varela M, Ballesteros C, Monroy E, Naranjo F B, Sanchez-Garacia M A, Calleja E, Munoz E 2000 Semicond. Sci. Technol. 15 996
[15] Yu T J (于彤军) 2011 CN 102252829 A
[16] Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Devices 57 79
[17] Wang L C, Ma J, Liu Z Q, Yi X Y, Yuan G D, Wang G H 2013 J. Appl. Phys. 114 133101
[18] Ng H M, Weimann N G, Chowdhury A 2003 J. Appl. Phys. 94 650
[19] Chung R B, Chen H T, Pan C C, Ha J S, DenBaars S P, Nakamura S 2012 Appl. Phys. Lett. 100 091104
[20] Kuo M L, Kim Y S, Hsieh M L, Lin S Y 2011 Nano Lett. 11 476
计量
- 文章访问数: 6089
- PDF下载量: 401
- 被引次数: 0