搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非热等离子体材料表面处理及功能化研究进展

张海宝 陈强

引用本文:
Citation:

非热等离子体材料表面处理及功能化研究进展

张海宝, 陈强

Recent progress of non-thermal plasma material surface treatment and functionalization

Zhang Hai-Bao, Chen Qiang
PDF
HTML
导出引用
  • 等离子体技术在现代材料制备和表面处理过程中起着重要的作用. 本文聚焦于非热等离子体(NTP)材料表面处理及功能化应用, 重点综述NTP在材料表面处理及功能化过程中的最新研究进展, 包括激励产生等离子体的等离子体源、NTP材料表面处理及功能化工艺以及具体应用. 其中, 激励产生等离子体的等离子体源包括感应耦合等离子体/容性耦合等离子体、电子回旋共振/表面波等离子体、螺旋波等离子体、大气压射流等离子体和介质阻挡放电等; NTP材料表面处理及功能化工艺包括等离子体表面接枝和聚合、等离子体增强化学气相沉积和等离子体辅助原子层沉积、等离子体增强反应刻蚀和等离子体辅助原子层刻蚀工艺等; 等离子体表面处理及功能化的具体应用领域包括亲水/疏水表面改性、表面微纳加工、生物组织表面处理、催化剂表面处理等. 最后提出了NTP技术材料表面处理及功能化的应用前景与发展趋势.
    Plasma technology plays an important role in preparing and processing materials nowadays. This review focuses on the applications of non-thermal plasma (NTP) in the surface treatment and functionalization of materials, including the plasma sources for generating plasmas, NTP techniques and specific application fields. The plasma sources include inductively coupled plasma, capacitively coupled plasma, electron cyclotron resonance plasma, surface wave plasma, helicon wave plasma, atmospheric pressure plasma jet, and dielectric barrier discharge plasma. The NTP techniques for material surface treatment and functionalization include plasma surface grafting and polymerization, plasma enhanced chemical vapor deposition, plasma assisted atomic layer deposition, plasma enhanced reactive ion etching, and plasma assisted atomic layer etching. Specific applications of plasma surface treatment and functionalization cover hydrophilic/hydrophobic surface modification, surface micro-nano processing, biological tissue surface treatment, and catalyst surfaces treatment. Finally, the application prospects and development trends of NTP technology for material surface treatment and functionalization are proposed.
      通信作者: 陈强, chenqiang@bigc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11505013, 11875090)、北京市自然科学基金(批准号: 1192008)、北京市委组织部优秀人才青年拔尖项目(批准号: 2016000026833ZK12)和北京市教委科技项目(批准号: KM202010015003)资助的课题
      Corresponding author: Chen Qiang, chenqiang@bigc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505013, 11875090), the Natural Science Foundation of Beijing, China (Grant No. 1192008), the Outstanding Talent Youth Top-notch Project of Beijing Municipal Party Committee Organization Department, China (Grant No. 2016000026833ZK12), and the Science and Technology Project of Beijing Municipal Education Commission, China (Grant No. KM202010015003)
    [1]

    Zhang H B, Sang L J, Wang Z D, Liu Z W, Yang L Z, Chen Q 2018 Plasma Sci. Technol. 20 063001Google Scholar

    [2]

    Langmuir I 1928 Proc. Natl Acad. Sci. 14 627Google Scholar

    [3]

    Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P 2009 Biomacromolecules 10 2351Google Scholar

    [4]

    Li Y P, Zhang Z C, Shi W, Lei M K 2014 Surf. Coat. Technol. 259 77Google Scholar

    [5]

    Kim H, Jung S J, Han Y H, Lee H Y, Kim J N, Jang D S, Lee J J 2008 Thin Solid Films 516 3530Google Scholar

    [6]

    Han D C, Choi Y C, Shin H J, Kwak G, Ahn K S, Kim J H, Lee D K 2011 Mol. Cryst. Liq. Cryst. 539 210Google Scholar

    [7]

    Kim M C, Masuoka T 2009 Appl. Surf. Sci. 255 4684Google Scholar

    [8]

    Juarez-Moreno J A, Chacon-Argaez U, Barron-Zambrano J, Carrera-Figueiras C, Quintana-Owen P, Talavera-Pech W, Perez-Padilla Y, Avila-Ortega A 2018 Plasma Sci. Technol. 20 065506Google Scholar

    [9]

    Yang L, Wang Z D, Zhang S Y, Yang L Z, Chen Q 2009 Chin. Phys. B 18 5401Google Scholar

    [10]

    Liston E M, Martinu L, Wertheimer M R 1993 J. Adhes. Sci. Technol. 7 1091Google Scholar

    [11]

    赵化侨 1993 等离子体化学与工艺 (合肥: 中国科学技术大学出版社) 第186页

    Zhao H Q 1993 Plasma Chemistry and Technology (Hefei: China Science and Technology Press) p186 (in Chinese)

    [12]

    Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044Google Scholar

    [13]

    Anton R, Wiegner T, Naumann W, Liebmann M, Klein C, Bradley C 2000 Rev. Sci. Instrum. 71 1177Google Scholar

    [14]

    Guruvenket S, Rao G M, Komath M, Raichur A M 2004 Appl. Surf. Sci. 236 278Google Scholar

    [15]

    Guruvenket S, Komath M, Vijayalakshmi S P, Raichur A M, Rao G M 2003 J. Appl. Polym. Sci. 90 1618Google Scholar

    [16]

    Conrads H, Schmidt M 2000 Plasma Sources Sci. Technol. 9 441Google Scholar

    [17]

    Shenton M, Lovell-Hoare M, Stevens G C 2001 J. Phys. D: Appl. Phys. 34 2754Google Scholar

    [18]

    Takagi S, Yamazaki O, Yamauchi K, Shinmura T 2013 Jpn. J. Appl. Phys. 52 086502Google Scholar

    [19]

    蓝朝晖, 胡希伟, 江中和, 刘明海 2010 物理学报 59 4093Google Scholar

    Lan C H, Hu X W, Jiang Z H, Liu M H 2010 Acta Phys. Sin. 59 4093Google Scholar

    [20]

    Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozakova Z, Krcma F 2018 Appl. Sci. 8 1870Google Scholar

    [21]

    Sasai K, Suzuki H, Toyoda H 2016 Jpn. J. Appl. Phys. 55 016203Google Scholar

    [22]

    Boswell R W 1970 Phys. Lett. A 33 457Google Scholar

    [23]

    Tynan G R, Bailey III A D, Campbell G A, Charatan R, de Chambrier A, Gibson G, Hemker D J, Jones K, Kuthi A, Lee C, Shoji T, Wilcoxson M 1997 J. Vac. Sci. Technol. A 15 2885Google Scholar

    [24]

    Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar

    [25]

    Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 A81Google Scholar

    [26]

    Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095Google Scholar

    [27]

    Chen F F, Torreblanca H 2009 Phys. Plasmas 16 057102Google Scholar

    [28]

    Zhang G L, Huang T Y, Jin C G, Wu X M, Zhuge L J, Ji H T 2018 Plasma Sci. Technol. 20 085603Google Scholar

    [29]

    Huang T Y, Jin C G, Yu Y W, Hu J S, Yang J H, Ding F, Chen X H, Ji P Y, Qian J W, Huang J J, Yu B, Wu X M 2020 IEEE Trans. Plasma Sci. 48 2878Google Scholar

    [30]

    Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875Google Scholar

    [31]

    Moon S Y, Choe W, Kang B K 2004 Appl. Phys. Lett. 84 188Google Scholar

    [32]

    Moon S Y, Choe W, Uhm H S, Hwang Y S, Choi J J 2002 Phys. Plasmas 9 4045Google Scholar

    [33]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D, Fang Z, Shao T 2020 Proc. CSEE 40 1339Google Scholar

    [34]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [35]

    Lu X, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R. 138 36Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602Google Scholar

    Wu S Q, Nie L L, Lu X P 2015 High Volt. Eng. 41 2602Google Scholar

    [37]

    Kong F, Zhang P H, Yu W X, Zhang C, Liu J B, Ren C Y, Shao T 2020 Appl. Surf. Sci. 527 146826Google Scholar

    [38]

    胡多, 任成燕, 章程, 邱锦涛, 孔飞, 邵涛, 严萍 2019 中国电机工程学报 39 4633Google Scholar

    Hu D, Ren C Y, Zhang C, Qiu J T, Kong F, Shao T, Yan P 2019 Proc. CSEE 39 4633Google Scholar

    [39]

    王新新 2009 高电压技术 34 1Google Scholar

    Wang X X 2009 High Volt. Eng. 34 1Google Scholar

    [40]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1Google Scholar

    [41]

    Foest R, Schmidt M, Becker K 2006 Int. J. Mass Spectrom. 248 87Google Scholar

    [42]

    牛铮, 邵涛, 章程, 于洋, 姜慧, 严萍 2011 高电压技术 37 1536Google Scholar

    Niu Z, Shao T, Zhang C, Yu Y, Jiang H, Yan P 2011 High Volt. Eng. 37 1536Google Scholar

    [43]

    Kim D Y, Kim S J, Joh H M, Chung T H 2018 Phys. Plasmas 25 073505Google Scholar

    [44]

    Zhang H B, Li H, Fang M, Wang Z D, Sang L J, Yang L Z, Chen Q 2016 Appl. Surf. Sci. 388 539Google Scholar

    [45]

    力伯曼 M A, 里登伯格 A J 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第12−18页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp12−18 (in Chinese)

    [46]

    戴忠玲, 毛明, 王友年 2006 物理 35 693Google Scholar

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693Google Scholar

    [47]

    Weng Y, Kushne M J 1992 J. Appl. Phys. 72 33Google Scholar

    [48]

    Moisan M, Zakrzewski Z 1991 J. Phys. D: Appl. Phys. 24 1025Google Scholar

    [49]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303Google Scholar

    [50]

    Wolf R, Sparavigna A C 2010 Engineering 02 397Google Scholar

    [51]

    Hansen R H, Schonhorn H 1966 J. Polym. Sci. C 4 203Google Scholar

    [52]

    Wang R X, Zhang C, Liu X, Xie Q, Yan P, Shao T 2015 Appl. Surf. Sci. 328 509Google Scholar

    [53]

    Mirabedini S M, Arabi H, Salem A, Asiaban S 2007 Prog. Org. Coat. 60 105Google Scholar

    [54]

    Tatoulian M, Arefi-Khonsari F, Borra J P 2007 Plasma Processes Polym. 4 360Google Scholar

    [55]

    Olivier A, Meyer F, Raquez J M, Damman P, Dubois P 2012 Prog. Polym. Sci. 37 157Google Scholar

    [56]

    Sheridan R J, Orski S V, Muramoto S, Stafford C M, Beers K L 2016 Langmuir 32 8071Google Scholar

    [57]

    Pandiyaraj K N, Ram Kumar M C, Arun Kumar A, Padmanabhan P V A, Deshmukh R R, Bah M, Ismat S S, Su P G, Halleluyah M, Halim A S 2016 Appl. Surf. Sci. 370 545Google Scholar

    [58]

    Wang C, Chen J R 2007 Appl. Surf. Sci. 253 4599Google Scholar

    [59]

    Wang C, Chen J R, Li R 2008 Appl. Surf. Sci. 254 2882Google Scholar

    [60]

    Vasilets V N, Hermel G, Konig U, Werner C, Muller M, Simon F, Grundke K, Ikada Y, Jacobasch H J 1997 Biomaterials 18 1139Google Scholar

    [61]

    Wu T, Efimenko K, Genzer J 2002 J. Am. Chem. Soc. 124 9394Google Scholar

    [62]

    Xue Y H, Quan W, Liu X L, Han C, Li H, Liu H 2017 Macromolecules 50 6482Google Scholar

    [63]

    Kuzuya M, Yamashiro T, Kondo S I, Tsuiki M 1997 Plasmas Polym. 2 113Google Scholar

    [64]

    Sasai Y, Oikawa M, Kondo S-i, Kuzuya M 2007 J. Photopolym. Sci. Technol. 20 197Google Scholar

    [65]

    Sasai Y, Kondo S I, Yamauchi Y, Kuzuya M 2006 J. Photopolym. Sci. Technol. 19 265Google Scholar

    [66]

    Kuzuya M, Sawa T, Mouri M, Kondo S I, Takai O 2003 Surf. Coat. Technol. 169-170 587Google Scholar

    [67]

    Kuzuya M, Sawa T, Yamashiro T, Kondo S I, Takai O 2001 J. Photopolym. Sci. Technol. 14 87Google Scholar

    [68]

    Biederman H 1987 Vacuum 37 367Google Scholar

    [69]

    Goodman I, Nesbitt B F 1960 Polymer 1 384Google Scholar

    [70]

    Goodman J 1960 J. Polym. Sci. Part A: Polym. Chem. 44 551Google Scholar

    [71]

    Pandiyaraj K N, Ferraria A M, do Rego A M B, Deshmukh R R, Su P G, Halleluyah M, Halim A S 2015 Appl. Surf. Sci. 328 1Google Scholar

    [72]

    Friedrich J 2011 Plasma Processes Polym. 8 783Google Scholar

    [73]

    Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R 2015 Plasma Processes Polym. 12 508Google Scholar

    [74]

    Xu L, Guo Y, Liu L, Bai G, Shi J, Zhang L, Chang X, Zhang R, Zhang J, Yu J 2020 Prog. Org. Coat. 146 105727Google Scholar

    [75]

    Bélard L, Poncin-Epaillard F, Dole P, Avérous L 2013 Eur. Polym. J. 49 882Google Scholar

    [76]

    Tkavc T, Petrinič I, Luxbacher T, Vesel A, Ristić T, Zemljič L F 2014 Int. J. Adhes. Adhes. 48 168Google Scholar

    [77]

    Han D C, Choi Y C, Shin H J, Son S, Kim J H, Sohn S H, Lee D K 2010 Mol. Cryst. Liq. Cryst. 532 148Google Scholar

    [78]

    Dayss E, Leps G, Meinhardt J 1999 Surf. Coat. Technol. 116-119 986Google Scholar

    [79]

    Fang Z, Liu Y, Liu K, Shao T, Zhang C 2012 Vacuum 86 1305Google Scholar

    [80]

    Polonskyi O, Kylian O, Petr M, Choukourov A, Hanus J, Biederman H 2013 Thin Solid Films 540 65Google Scholar

    [81]

    Wang H, Yang L Z, Chen Q 2014 Plasma Sci. Technol. 16 37Google Scholar

    [82]

    Park M, Oh S, Kim H, Jung D, Choi D, Park J S 2013 Thin Solid Films 546 153Google Scholar

    [83]

    Starostin S A, Creatore M, Bouwstra J B, van de Sanden M C M, de Vries H W 2015 Plasma Processes Polym. 12 545Google Scholar

    [84]

    Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M 2009 Plasma Processes Polym. 6 S705Google Scholar

    [85]

    Durocher-Jean A, Durán I R, Asadollahi S, Laroche G, Stafford L 2020 Plasma Processes Polym. 17 1900229Google Scholar

    [86]

    Fei F, Chen Q, Liu Z, Liu F, Solodovnyk A 2012 Plasma Chem. Plasma Process. 32 755Google Scholar

    [87]

    Fei F, Wang Z, Chen Q, Liu Z, Sang L 2013 Surf. Coat. Technol. 228 S61Google Scholar

    [88]

    Seman M T, Richards D N, Rowlette P C, Kubala N G, Wolden C A 2008 J. Vac. Sci. Technol. A 26 1213Google Scholar

    [89]

    Ozeki K, Nagashima I, Ohgoe Y, Hirakuri K K, Mukaibayashi H, Masuzawa T 2009 Appl. Surf. Sci. 255 7286Google Scholar

    [90]

    Abbas G A, Roy S S, Papakonstantinou P, McLaughlin J A 2005 Carbon 43 303Google Scholar

    [91]

    George S M 2010 Chem. Rev. 110 111Google Scholar

    [92]

    Guo Z, Li H, Chen Q, Sang L J, Yang L Z, Liu Z W, Wang X W 2015 Chem. Mater. 27 5988Google Scholar

    [93]

    Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N, Elam J W 2017 Mater. Horiz. 4 133Google Scholar

    [94]

    Lee J G, Kim H G, Kim S S 2013 Thin Solid Films 534 515Google Scholar

    [95]

    Langereis E, Creatore M, Heil S B S, van de Sanden M C M, Kessels W M M 2006 Appl. Phys. Lett. 89 081915Google Scholar

    [96]

    Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H, Park C E 2014 ACS Appl. Mater. Interfaces 6 6731Google Scholar

    [97]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar

    [98]

    Paetzelt H, Böhm G, Arnold T 2015 Plasma Sources Sci. Technol. 24 025002Google Scholar

    [99]

    Osipov A A, Iankevich G A, Speshilova A B, Osipov A A, Endiiarova E V, Berezenko V I, Tyurikova I A, Tyurikov K S, Alexandrov S E 2020 Sci. Rep. 10 19977Google Scholar

    [100]

    Petit-Etienne C, Darnon M, Vallier L, Pargon E, Cunge G, Fouchier M, Bodart P, Haass M, Brihoum M, Joubert O, Banna S, Lill T 2011 J. Vac. Sci. Technol. B 29 051202Google Scholar

    [101]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H, Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303Google Scholar

    [102]

    罗童, 陈强 2019 真空与低温 25 19Google Scholar

    Luo T, Chen Q 2019 Vac. Cryog. 25 19Google Scholar

    [103]

    Kanarik K J, Lill T, Hudson E A, Sriraman S, Tan S, Marks J, Vahedi V, Gottscho R A 2015 J. Vac. Sci. Technol. A 33 020802Google Scholar

    [104]

    Athavale S D, Economou D J 1995 J. Vac. Sci. Technol. A 13 966Google Scholar

    [105]

    Metzler D, Bruce R L, Engelmann S, Joseph E A, Oehrlein G S 2014 J. Vac. Sci. Technol. A 32 020603Google Scholar

    [106]

    Honda M, Katsunuma T, Tabata M, Tsuji A, Oishi T, Hisamatsu T, Ogawa S, Kihara Y 2017 J. Phys. D: Appl. Phys. 50 234002Google Scholar

    [107]

    Ohba T, Yang W B, Tan S, Kanarik K J, Nojiri K 2017 Jpn. J. Appl. Phys. 56 06HB06Google Scholar

    [108]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol. A 35 060603Google Scholar

    [109]

    Benjamin N M P, Chapman B N, Boswell R W 1991 Proc. SPIE 1392 95Google Scholar

    [110]

    Mameli A, Verheijen M A, Mackus A J M, Kessels W M M, Roozeboom F 2018 ACS Appl. Mater. Interfaces 10 38588Google Scholar

    [111]

    Antoun G, Lefaucheux P, Tillocher T, Dussart R, Yamazaki K, Yatsuda K, Faguet J, Maekawa K 2019 Appl. Phys. Lett. 115 153109Google Scholar

    [112]

    Bodas D S, Khan-Malek C 2007 Sens. Actuators, B 120 719Google Scholar

    [113]

    Godeau G, Amigoni S, Darmanin T, Guittard F 2016 Appl. Surf. Sci. 387 28Google Scholar

    [114]

    Son J, Lee J Y, Han N, Cha J, Choi J, Kwon J, Nam S, Yoo K H, Lee G H, Hong J 2020 Nano Lett. 20 5625Google Scholar

    [115]

    Peng Q, Qu L, Dai L, Park K, Vaia R A 2008 ACS Nano 2 1833Google Scholar

    [116]

    Graff G L, Williford R E, Burrows P E 2004 J. Appl. Phys. 96 1840Google Scholar

    [117]

    Majee S, Cerqueira M F, Tondelier D, Geffroy B, Bonnassieux Y, Alpuim P, Bourée J E 2015 Prog. Org. Coat. 80 27Google Scholar

    [118]

    Tashiro H, Nakaya M, Hotta A 2013 Diamond Relat. Mater. 35 7Google Scholar

    [119]

    Hwang K H, Seo S W, Jung E, Chae H, Cho S 2014 Korean J. Chem. Eng. 31 528Google Scholar

    [120]

    Lim S H, Seo S W, Lee H, Chae H, Cho S M 2016 Korean J. Chem. Eng. 33 1971Google Scholar

    [121]

    Popelka A, Abdulkareem A, Mahmoud A A, Nassr M G, Al-Ruweidi M K A A, Mohamoud K J, Hussein M K, Lehocky M, Vesela D, Humpolicek P, Kasak P 2020 Surf. Coat. Technol. 400 126216Google Scholar

    [122]

    周鑫才, 梁徳凤, 陈伟建, 张文浩, 曹颖光, 卢新培 2018 临床口腔医学杂志 34 341Google Scholar

    Zhou X C, Liang D F, Chen W J, Zhang W H, Cao Y G, Lu X P 2018 J. Clin. Stomatol. 34 341Google Scholar

    [123]

    Chang Y C, Lee W F, Feng S W, Huang H M, Lin C T, Teng N C, Chang W J 2016 PLoS One 11 e0146219Google Scholar

    [124]

    Yamamoto H, Shibata Y, Miyazaki T 2005 J. Dent. Res. 84 668Google Scholar

    [125]

    Pan Y H, Lin J C Y, Chen M K, Salamanca E, Choy C S, Tsai P Y, Leu S J, Yang K C, Huang H M, Yao W L, Chang W J 2020 Materials 13 3771Google Scholar

    [126]

    谢超, 周波, 周灵, 吴雨洁, 王双印 2020 化学进展 32 1172Google Scholar

    Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y 2020 Prog. Chem. 32 1172Google Scholar

    [127]

    Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S Y, Dai L 2016 Angew. Chem. Int. Ed. 55 5277Google Scholar

    [128]

    Yan D F, Chen R, Xiao Z H, Wang S Y 2019 Electrochim. Acta 303 316Google Scholar

    [129]

    Guo Y, Gao X, Zhang C, Wu Y, Chang X, Wang T, Zheng X, Du A, Wang B, Zheng J, Ostrikov K, Li X G 2019 J. Mater. Chem. A 7 8129Google Scholar

  • 图 1  非热等离子体材料表面处理及功能化过程中的等离子体源、等离子体工艺以及具体应用

    Fig. 1.  Non-thermal plasma for material surface treatment and functionalization: Plasma sources, plasma techniques and specific applications.

    图 2  DBD等离子体设备示意图 (a)—(c)平板型放电电极结构; (d), (e)填充床型放电电极结构[1]

    Fig. 2.  Schematical configurations of several DBD: (a)–(c) DBD with planar type discharge electrode structure; (d), (e) DBD with packed bed type discharge electrode structure[1].

    图 3  等离子体表面接枝处理两种工艺模式—“接枝自”模式和“接枝到”模式[1]

    Fig. 3.  Two kinds of different strategies of plasma grafting for modification: “plasma grafting from” and “plasma grafting onto”[1].

    图 4  ALE过程示意图 (a) ALE工艺; (b) Si ALE工艺; (c) SiO2 ALD工艺. ALE工艺与ALD工艺类似, 区别在于反应B中发生钝化层的移除而不是吸附[103]

    Fig. 4.  Schematic of ALE (a) generic concept, (b) for the Si case study, and (c) in comparison to SiO2 ALD. ALE is similar to ALD except that removal takes place instead of adsorption in reaction B[103].

    图 5  H2等离子体表面处理石墨烯 (a)处理700 s时石墨烯的水接触角从原始样品的93°下降至16°; (b)改性石墨烯表面亲水性区域对癌细胞的吸附定位[114]

    Fig. 5.  Modification of graphene by H2 plasma: (a) Control of the graphene wettability via hydrogenation. The as-grown graphene is hydrophobic, with a large wetting angle of 93°. As hydrogenation proceeds, leading to a very small wetting angle of 16° at 700 s. (b) Optical microscopic image of cancer cells positioned on the hydrophilic surface of patterned graphene[114].

    表 1  几种非热等离子体源放电参数

    Table 1.  Discharge parameters of several NTP sources.

    NTP源频率/MHz气压/Pa电子温度/eV电子密度/cm–3磁场强度/G参考文献
    CCP0.05—13.561—1021—5109—10110蒲以康等[45]
    ICP1—100 (常用13.56)10–1—11—101011—10120戴忠玲等[46]
    ECR300—2450 (常用2450, 915)10–2—10–12—201011—10130—1000 (与频率有关)Weng等[47]
    SWP1—10000 (常用2450)10–1—1021—101011—10120Moisan等[48]
    HWP1—50 (常用13.56)10–2—102—201011—1014100—2000Boivin等[49]
    APPJ0—100001051—51011—10140吴淑群等[36]
    DBD0.05—101051—101014—10150Wang等[39]
    下载: 导出CSV

    表 2  非热等离子体聚合物基材表面接枝和聚合

    Table 2.  Polymer substrate surface grafting and polymerization by NTP.

    NTP源改性气氛改性基材主要结论参考文献
    RF-CCP (13.56 MHz)Ar棉、麻织物超疏水性(↑)、穿着舒适度(↑)Xu等[74]
    RF-CCP (13.56 MHz, 20 W)C2H2聚乳酸、聚已酸内酯涂层附着性(↑)、氧气阻隔性(↑)Bélard等[75]
    RF-ICP (27.12 MHz, 200 W)O2, CO2PET亲水性(↑)、含氧基团数量(↑)Tkavc等[76]
    RF-ICP (13.56 MHz, 400 W)O2PET表面粗糙度(↑)、水接触角(↓)、
    含氧基团数量(↑)
    Han等[77]
    MW-ECR (2.45 GHz, 300 W)Ar, AAcPP表面张力(↑)、Cu涂层附着性(↑)Dayss等[78]
    MW-SWP (2.45 GHz, 250 W)CO2聚四氟乙烯(PTFE)水接触角(↓)、含氧基团数量(↑)Vasilets等[60]
    MW-SWP (2.45 GHz, 1600 W)Ar氟基三聚物(THV)含氧基团数量(↑)Sasai等[21]
    APPJ (50 kHz, 0—20 kV)TEOS/O2/Ar聚全氟乙丙烯(FEP)含硅基团数量(↑)、沿面闪络电压(↑)胡多等[38]
    DBD (1 kHz, 25 kV)空气PET表面粗糙度(↑)、水接触角(↓)、
    含氧基团数量(↑)
    Fang等[79]
    DBD (RTR, 40 kHz)AAc, C2H6O, C3H7NPE水接触角(↓)、Al 涂层附着性(↑)Zhang等[44]
    下载: 导出CSV

    表 3  非热等离子体沉积无机功能涂层

    Table 3.  Inorganic functional coatings deposited by NTP.

    无机薄膜NTP源工作气氛衬底主要结论参考文献
    SiOxPECVD (DBD, 200 kHz, 3 kV)TEOS/O2/N2PEN附着性能(↑)、阻隔性能(↑)Starostin等[83]
    SiOxPECVD (CPP, 40 kHz, 50 W)HMDSO/O2PVC抗迁移性能(↑)Fei等[86,87]
    AlOxPECVD (1 Hz, 30 W)TMA/O2硅片沉积速率(↑)、薄膜纯度(↑)Seman等[88]
    DLCPECVD (RF, 13.56 MHz, 250 W)CH4PTFE薄膜质量(↑)、阻隔性能(↑)Ozeki等[89]
    a-C:HPECVD (RF, 13.56 MHz)C2H2/ArPC, PET薄膜硬度(↓)、阻隔性能(↑)Abbas等[90]
    a-C:HPECVD (RF, 13.56 MHz, 0-90 W)n-C6H14/ArPET, 硅片致密性(↑)、阻隔性能(↑)Polonsky等[80]
    SiOxCyHzPECVD (APPJ, 20 kHz, 350 V)空气/HMDSOPP阻隔性能(↑)Scopece等[84]
    SiOxCyHPECVD (MW-APPJ, 2.45 GHz, 2000 W)Ar/HMDSO玻璃抗雾性能(↑)Durocher-Jean等[85]
    AlxOyPAALD (CCP, 60 Hz, 500 W)TMA/O2PENWVTR: 8.85 × 10–4 g·m–2·d–1Lee等[94]
    Al2O3PAALD (RF-ICP)TMA/O2PENWVTR: 5.0 × 10–3 g·m–2·d–1Langereis等[95]
    Al2O3/TiO2PAALD (APPJ, 20 kHz, 350 V)TMA/TDMATOTFT防腐性能(↑)、阻隔性能(↑)Kim等[96]
    下载: 导出CSV

    表 4  非热等离子体辅助材料表面刻蚀

    Table 4.  Material surface etching assisted by NTP.

    衬底NTP源刻蚀气体主要结果参考文献
    SiPERIE (RF-APPJ, 13.56 MHz)He/N2/CF4刻蚀速率: 0.068 mm3·min–1; RRMS: 0.2—2.44 nmPaetzelt等[98]
    SiCPERIE (RF-ICP, 6.78 MHz, 1000 W)SF6/O2刻蚀速率: 1.28 µm·min–1; RRMS: 0.7 nmOsipov等[99]
    SiO2PERIE (RF-ICP, 13.56 MHz, 500 W)Cl2刻蚀速率: 2.2 nm·min-1Petit-Etienne等[100]
    GaNPERIE (MW-ECR, 2.45 GHz, 850 W)Cl2刻蚀速率: 0.28 μm·min–1; 刻蚀选择性: 39∶1Harrison等[101]
    HfO2PERIE (MW-ECR, 2.45 GHz, 600 W)CF4/Ar/O2刻蚀速率: 0.36 nm·min–1; RRMS: 0.17 nm罗童等[102]
    SiO2PAALE (RF-ICP, 13.56 MHz)Ar/C4F8刻蚀速率: 0.2—0.3 Å·s–1Metzler等[105]
    GaNPAALE (RF-ICP)Cl2/ArEPC: 0.4 nm·cycle–1; RRMS: 0.6 nmOhba等[107]
    GaNPAALE (RF-ICP, 50 W)Cl2/Ar刻蚀速率: 2.87 Å·cycle–1Kauppinen等[108]
    ZnOPAALE (RF-ICP, 13.56 MHz, 200 W)Hacac/O2EPC: 0.5—1.3 Å·cycle–1; 刻蚀选择性: 80∶1Mameli等[110]
    SiO2PAALE (RF-ICP, 13.56 MHz)Ar/C4F8EPC: 0.4 nm·cycle–1; RRMS: 1.2 nmAntoun等[111]
    下载: 导出CSV
  • [1]

    Zhang H B, Sang L J, Wang Z D, Liu Z W, Yang L Z, Chen Q 2018 Plasma Sci. Technol. 20 063001Google Scholar

    [2]

    Langmuir I 1928 Proc. Natl Acad. Sci. 14 627Google Scholar

    [3]

    Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P 2009 Biomacromolecules 10 2351Google Scholar

    [4]

    Li Y P, Zhang Z C, Shi W, Lei M K 2014 Surf. Coat. Technol. 259 77Google Scholar

    [5]

    Kim H, Jung S J, Han Y H, Lee H Y, Kim J N, Jang D S, Lee J J 2008 Thin Solid Films 516 3530Google Scholar

    [6]

    Han D C, Choi Y C, Shin H J, Kwak G, Ahn K S, Kim J H, Lee D K 2011 Mol. Cryst. Liq. Cryst. 539 210Google Scholar

    [7]

    Kim M C, Masuoka T 2009 Appl. Surf. Sci. 255 4684Google Scholar

    [8]

    Juarez-Moreno J A, Chacon-Argaez U, Barron-Zambrano J, Carrera-Figueiras C, Quintana-Owen P, Talavera-Pech W, Perez-Padilla Y, Avila-Ortega A 2018 Plasma Sci. Technol. 20 065506Google Scholar

    [9]

    Yang L, Wang Z D, Zhang S Y, Yang L Z, Chen Q 2009 Chin. Phys. B 18 5401Google Scholar

    [10]

    Liston E M, Martinu L, Wertheimer M R 1993 J. Adhes. Sci. Technol. 7 1091Google Scholar

    [11]

    赵化侨 1993 等离子体化学与工艺 (合肥: 中国科学技术大学出版社) 第186页

    Zhao H Q 1993 Plasma Chemistry and Technology (Hefei: China Science and Technology Press) p186 (in Chinese)

    [12]

    Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044Google Scholar

    [13]

    Anton R, Wiegner T, Naumann W, Liebmann M, Klein C, Bradley C 2000 Rev. Sci. Instrum. 71 1177Google Scholar

    [14]

    Guruvenket S, Rao G M, Komath M, Raichur A M 2004 Appl. Surf. Sci. 236 278Google Scholar

    [15]

    Guruvenket S, Komath M, Vijayalakshmi S P, Raichur A M, Rao G M 2003 J. Appl. Polym. Sci. 90 1618Google Scholar

    [16]

    Conrads H, Schmidt M 2000 Plasma Sources Sci. Technol. 9 441Google Scholar

    [17]

    Shenton M, Lovell-Hoare M, Stevens G C 2001 J. Phys. D: Appl. Phys. 34 2754Google Scholar

    [18]

    Takagi S, Yamazaki O, Yamauchi K, Shinmura T 2013 Jpn. J. Appl. Phys. 52 086502Google Scholar

    [19]

    蓝朝晖, 胡希伟, 江中和, 刘明海 2010 物理学报 59 4093Google Scholar

    Lan C H, Hu X W, Jiang Z H, Liu M H 2010 Acta Phys. Sin. 59 4093Google Scholar

    [20]

    Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozakova Z, Krcma F 2018 Appl. Sci. 8 1870Google Scholar

    [21]

    Sasai K, Suzuki H, Toyoda H 2016 Jpn. J. Appl. Phys. 55 016203Google Scholar

    [22]

    Boswell R W 1970 Phys. Lett. A 33 457Google Scholar

    [23]

    Tynan G R, Bailey III A D, Campbell G A, Charatan R, de Chambrier A, Gibson G, Hemker D J, Jones K, Kuthi A, Lee C, Shoji T, Wilcoxson M 1997 J. Vac. Sci. Technol. A 15 2885Google Scholar

    [24]

    Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar

    [25]

    Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 A81Google Scholar

    [26]

    Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095Google Scholar

    [27]

    Chen F F, Torreblanca H 2009 Phys. Plasmas 16 057102Google Scholar

    [28]

    Zhang G L, Huang T Y, Jin C G, Wu X M, Zhuge L J, Ji H T 2018 Plasma Sci. Technol. 20 085603Google Scholar

    [29]

    Huang T Y, Jin C G, Yu Y W, Hu J S, Yang J H, Ding F, Chen X H, Ji P Y, Qian J W, Huang J J, Yu B, Wu X M 2020 IEEE Trans. Plasma Sci. 48 2878Google Scholar

    [30]

    Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875Google Scholar

    [31]

    Moon S Y, Choe W, Kang B K 2004 Appl. Phys. Lett. 84 188Google Scholar

    [32]

    Moon S Y, Choe W, Uhm H S, Hwang Y S, Choi J J 2002 Phys. Plasmas 9 4045Google Scholar

    [33]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D, Fang Z, Shao T 2020 Proc. CSEE 40 1339Google Scholar

    [34]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [35]

    Lu X, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R. 138 36Google Scholar

    [36]

    吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602Google Scholar

    Wu S Q, Nie L L, Lu X P 2015 High Volt. Eng. 41 2602Google Scholar

    [37]

    Kong F, Zhang P H, Yu W X, Zhang C, Liu J B, Ren C Y, Shao T 2020 Appl. Surf. Sci. 527 146826Google Scholar

    [38]

    胡多, 任成燕, 章程, 邱锦涛, 孔飞, 邵涛, 严萍 2019 中国电机工程学报 39 4633Google Scholar

    Hu D, Ren C Y, Zhang C, Qiu J T, Kong F, Shao T, Yan P 2019 Proc. CSEE 39 4633Google Scholar

    [39]

    王新新 2009 高电压技术 34 1Google Scholar

    Wang X X 2009 High Volt. Eng. 34 1Google Scholar

    [40]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1Google Scholar

    [41]

    Foest R, Schmidt M, Becker K 2006 Int. J. Mass Spectrom. 248 87Google Scholar

    [42]

    牛铮, 邵涛, 章程, 于洋, 姜慧, 严萍 2011 高电压技术 37 1536Google Scholar

    Niu Z, Shao T, Zhang C, Yu Y, Jiang H, Yan P 2011 High Volt. Eng. 37 1536Google Scholar

    [43]

    Kim D Y, Kim S J, Joh H M, Chung T H 2018 Phys. Plasmas 25 073505Google Scholar

    [44]

    Zhang H B, Li H, Fang M, Wang Z D, Sang L J, Yang L Z, Chen Q 2016 Appl. Surf. Sci. 388 539Google Scholar

    [45]

    力伯曼 M A, 里登伯格 A J 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第12−18页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp12−18 (in Chinese)

    [46]

    戴忠玲, 毛明, 王友年 2006 物理 35 693Google Scholar

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693Google Scholar

    [47]

    Weng Y, Kushne M J 1992 J. Appl. Phys. 72 33Google Scholar

    [48]

    Moisan M, Zakrzewski Z 1991 J. Phys. D: Appl. Phys. 24 1025Google Scholar

    [49]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303Google Scholar

    [50]

    Wolf R, Sparavigna A C 2010 Engineering 02 397Google Scholar

    [51]

    Hansen R H, Schonhorn H 1966 J. Polym. Sci. C 4 203Google Scholar

    [52]

    Wang R X, Zhang C, Liu X, Xie Q, Yan P, Shao T 2015 Appl. Surf. Sci. 328 509Google Scholar

    [53]

    Mirabedini S M, Arabi H, Salem A, Asiaban S 2007 Prog. Org. Coat. 60 105Google Scholar

    [54]

    Tatoulian M, Arefi-Khonsari F, Borra J P 2007 Plasma Processes Polym. 4 360Google Scholar

    [55]

    Olivier A, Meyer F, Raquez J M, Damman P, Dubois P 2012 Prog. Polym. Sci. 37 157Google Scholar

    [56]

    Sheridan R J, Orski S V, Muramoto S, Stafford C M, Beers K L 2016 Langmuir 32 8071Google Scholar

    [57]

    Pandiyaraj K N, Ram Kumar M C, Arun Kumar A, Padmanabhan P V A, Deshmukh R R, Bah M, Ismat S S, Su P G, Halleluyah M, Halim A S 2016 Appl. Surf. Sci. 370 545Google Scholar

    [58]

    Wang C, Chen J R 2007 Appl. Surf. Sci. 253 4599Google Scholar

    [59]

    Wang C, Chen J R, Li R 2008 Appl. Surf. Sci. 254 2882Google Scholar

    [60]

    Vasilets V N, Hermel G, Konig U, Werner C, Muller M, Simon F, Grundke K, Ikada Y, Jacobasch H J 1997 Biomaterials 18 1139Google Scholar

    [61]

    Wu T, Efimenko K, Genzer J 2002 J. Am. Chem. Soc. 124 9394Google Scholar

    [62]

    Xue Y H, Quan W, Liu X L, Han C, Li H, Liu H 2017 Macromolecules 50 6482Google Scholar

    [63]

    Kuzuya M, Yamashiro T, Kondo S I, Tsuiki M 1997 Plasmas Polym. 2 113Google Scholar

    [64]

    Sasai Y, Oikawa M, Kondo S-i, Kuzuya M 2007 J. Photopolym. Sci. Technol. 20 197Google Scholar

    [65]

    Sasai Y, Kondo S I, Yamauchi Y, Kuzuya M 2006 J. Photopolym. Sci. Technol. 19 265Google Scholar

    [66]

    Kuzuya M, Sawa T, Mouri M, Kondo S I, Takai O 2003 Surf. Coat. Technol. 169-170 587Google Scholar

    [67]

    Kuzuya M, Sawa T, Yamashiro T, Kondo S I, Takai O 2001 J. Photopolym. Sci. Technol. 14 87Google Scholar

    [68]

    Biederman H 1987 Vacuum 37 367Google Scholar

    [69]

    Goodman I, Nesbitt B F 1960 Polymer 1 384Google Scholar

    [70]

    Goodman J 1960 J. Polym. Sci. Part A: Polym. Chem. 44 551Google Scholar

    [71]

    Pandiyaraj K N, Ferraria A M, do Rego A M B, Deshmukh R R, Su P G, Halleluyah M, Halim A S 2015 Appl. Surf. Sci. 328 1Google Scholar

    [72]

    Friedrich J 2011 Plasma Processes Polym. 8 783Google Scholar

    [73]

    Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R 2015 Plasma Processes Polym. 12 508Google Scholar

    [74]

    Xu L, Guo Y, Liu L, Bai G, Shi J, Zhang L, Chang X, Zhang R, Zhang J, Yu J 2020 Prog. Org. Coat. 146 105727Google Scholar

    [75]

    Bélard L, Poncin-Epaillard F, Dole P, Avérous L 2013 Eur. Polym. J. 49 882Google Scholar

    [76]

    Tkavc T, Petrinič I, Luxbacher T, Vesel A, Ristić T, Zemljič L F 2014 Int. J. Adhes. Adhes. 48 168Google Scholar

    [77]

    Han D C, Choi Y C, Shin H J, Son S, Kim J H, Sohn S H, Lee D K 2010 Mol. Cryst. Liq. Cryst. 532 148Google Scholar

    [78]

    Dayss E, Leps G, Meinhardt J 1999 Surf. Coat. Technol. 116-119 986Google Scholar

    [79]

    Fang Z, Liu Y, Liu K, Shao T, Zhang C 2012 Vacuum 86 1305Google Scholar

    [80]

    Polonskyi O, Kylian O, Petr M, Choukourov A, Hanus J, Biederman H 2013 Thin Solid Films 540 65Google Scholar

    [81]

    Wang H, Yang L Z, Chen Q 2014 Plasma Sci. Technol. 16 37Google Scholar

    [82]

    Park M, Oh S, Kim H, Jung D, Choi D, Park J S 2013 Thin Solid Films 546 153Google Scholar

    [83]

    Starostin S A, Creatore M, Bouwstra J B, van de Sanden M C M, de Vries H W 2015 Plasma Processes Polym. 12 545Google Scholar

    [84]

    Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M 2009 Plasma Processes Polym. 6 S705Google Scholar

    [85]

    Durocher-Jean A, Durán I R, Asadollahi S, Laroche G, Stafford L 2020 Plasma Processes Polym. 17 1900229Google Scholar

    [86]

    Fei F, Chen Q, Liu Z, Liu F, Solodovnyk A 2012 Plasma Chem. Plasma Process. 32 755Google Scholar

    [87]

    Fei F, Wang Z, Chen Q, Liu Z, Sang L 2013 Surf. Coat. Technol. 228 S61Google Scholar

    [88]

    Seman M T, Richards D N, Rowlette P C, Kubala N G, Wolden C A 2008 J. Vac. Sci. Technol. A 26 1213Google Scholar

    [89]

    Ozeki K, Nagashima I, Ohgoe Y, Hirakuri K K, Mukaibayashi H, Masuzawa T 2009 Appl. Surf. Sci. 255 7286Google Scholar

    [90]

    Abbas G A, Roy S S, Papakonstantinou P, McLaughlin J A 2005 Carbon 43 303Google Scholar

    [91]

    George S M 2010 Chem. Rev. 110 111Google Scholar

    [92]

    Guo Z, Li H, Chen Q, Sang L J, Yang L Z, Liu Z W, Wang X W 2015 Chem. Mater. 27 5988Google Scholar

    [93]

    Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N, Elam J W 2017 Mater. Horiz. 4 133Google Scholar

    [94]

    Lee J G, Kim H G, Kim S S 2013 Thin Solid Films 534 515Google Scholar

    [95]

    Langereis E, Creatore M, Heil S B S, van de Sanden M C M, Kessels W M M 2006 Appl. Phys. Lett. 89 081915Google Scholar

    [96]

    Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H, Park C E 2014 ACS Appl. Mater. Interfaces 6 6731Google Scholar

    [97]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar

    [98]

    Paetzelt H, Böhm G, Arnold T 2015 Plasma Sources Sci. Technol. 24 025002Google Scholar

    [99]

    Osipov A A, Iankevich G A, Speshilova A B, Osipov A A, Endiiarova E V, Berezenko V I, Tyurikova I A, Tyurikov K S, Alexandrov S E 2020 Sci. Rep. 10 19977Google Scholar

    [100]

    Petit-Etienne C, Darnon M, Vallier L, Pargon E, Cunge G, Fouchier M, Bodart P, Haass M, Brihoum M, Joubert O, Banna S, Lill T 2011 J. Vac. Sci. Technol. B 29 051202Google Scholar

    [101]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H, Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303Google Scholar

    [102]

    罗童, 陈强 2019 真空与低温 25 19Google Scholar

    Luo T, Chen Q 2019 Vac. Cryog. 25 19Google Scholar

    [103]

    Kanarik K J, Lill T, Hudson E A, Sriraman S, Tan S, Marks J, Vahedi V, Gottscho R A 2015 J. Vac. Sci. Technol. A 33 020802Google Scholar

    [104]

    Athavale S D, Economou D J 1995 J. Vac. Sci. Technol. A 13 966Google Scholar

    [105]

    Metzler D, Bruce R L, Engelmann S, Joseph E A, Oehrlein G S 2014 J. Vac. Sci. Technol. A 32 020603Google Scholar

    [106]

    Honda M, Katsunuma T, Tabata M, Tsuji A, Oishi T, Hisamatsu T, Ogawa S, Kihara Y 2017 J. Phys. D: Appl. Phys. 50 234002Google Scholar

    [107]

    Ohba T, Yang W B, Tan S, Kanarik K J, Nojiri K 2017 Jpn. J. Appl. Phys. 56 06HB06Google Scholar

    [108]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol. A 35 060603Google Scholar

    [109]

    Benjamin N M P, Chapman B N, Boswell R W 1991 Proc. SPIE 1392 95Google Scholar

    [110]

    Mameli A, Verheijen M A, Mackus A J M, Kessels W M M, Roozeboom F 2018 ACS Appl. Mater. Interfaces 10 38588Google Scholar

    [111]

    Antoun G, Lefaucheux P, Tillocher T, Dussart R, Yamazaki K, Yatsuda K, Faguet J, Maekawa K 2019 Appl. Phys. Lett. 115 153109Google Scholar

    [112]

    Bodas D S, Khan-Malek C 2007 Sens. Actuators, B 120 719Google Scholar

    [113]

    Godeau G, Amigoni S, Darmanin T, Guittard F 2016 Appl. Surf. Sci. 387 28Google Scholar

    [114]

    Son J, Lee J Y, Han N, Cha J, Choi J, Kwon J, Nam S, Yoo K H, Lee G H, Hong J 2020 Nano Lett. 20 5625Google Scholar

    [115]

    Peng Q, Qu L, Dai L, Park K, Vaia R A 2008 ACS Nano 2 1833Google Scholar

    [116]

    Graff G L, Williford R E, Burrows P E 2004 J. Appl. Phys. 96 1840Google Scholar

    [117]

    Majee S, Cerqueira M F, Tondelier D, Geffroy B, Bonnassieux Y, Alpuim P, Bourée J E 2015 Prog. Org. Coat. 80 27Google Scholar

    [118]

    Tashiro H, Nakaya M, Hotta A 2013 Diamond Relat. Mater. 35 7Google Scholar

    [119]

    Hwang K H, Seo S W, Jung E, Chae H, Cho S 2014 Korean J. Chem. Eng. 31 528Google Scholar

    [120]

    Lim S H, Seo S W, Lee H, Chae H, Cho S M 2016 Korean J. Chem. Eng. 33 1971Google Scholar

    [121]

    Popelka A, Abdulkareem A, Mahmoud A A, Nassr M G, Al-Ruweidi M K A A, Mohamoud K J, Hussein M K, Lehocky M, Vesela D, Humpolicek P, Kasak P 2020 Surf. Coat. Technol. 400 126216Google Scholar

    [122]

    周鑫才, 梁徳凤, 陈伟建, 张文浩, 曹颖光, 卢新培 2018 临床口腔医学杂志 34 341Google Scholar

    Zhou X C, Liang D F, Chen W J, Zhang W H, Cao Y G, Lu X P 2018 J. Clin. Stomatol. 34 341Google Scholar

    [123]

    Chang Y C, Lee W F, Feng S W, Huang H M, Lin C T, Teng N C, Chang W J 2016 PLoS One 11 e0146219Google Scholar

    [124]

    Yamamoto H, Shibata Y, Miyazaki T 2005 J. Dent. Res. 84 668Google Scholar

    [125]

    Pan Y H, Lin J C Y, Chen M K, Salamanca E, Choy C S, Tsai P Y, Leu S J, Yang K C, Huang H M, Yao W L, Chang W J 2020 Materials 13 3771Google Scholar

    [126]

    谢超, 周波, 周灵, 吴雨洁, 王双印 2020 化学进展 32 1172Google Scholar

    Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y 2020 Prog. Chem. 32 1172Google Scholar

    [127]

    Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S Y, Dai L 2016 Angew. Chem. Int. Ed. 55 5277Google Scholar

    [128]

    Yan D F, Chen R, Xiao Z H, Wang S Y 2019 Electrochim. Acta 303 316Google Scholar

    [129]

    Guo Y, Gao X, Zhang C, Wu Y, Chang X, Wang T, Zheng X, Du A, Wang B, Zheng J, Ostrikov K, Li X G 2019 J. Mater. Chem. A 7 8129Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [3] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [4] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [5] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究. 物理学报, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [6] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究. 物理学报, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [7] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法. 物理学报, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [8] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [9] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响. 物理学报, 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [10] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [11] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 张晓荷, 王冬杰, 夏海平. 卟啉铜接枝SiO2有机-无机复合材料及强的非线性折射率. 物理学报, 2011, 60(2): 024210. doi: 10.7498/aps.60.024210
    [14] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [15] 张发荣, 张晓丹, Amanatides E., Mataras D., 赵 静, 赵 颖. 微晶硅薄膜沉积过程中的等离子体光学与电学特性研究. 物理学报, 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [16] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [17] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [18] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [19] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [20] 郝建奎, 焦 飞, 黄森林, 朱 风, 赵 夔. 提高射频超导加速腔性能的表面干式处理研究. 物理学报, 2005, 54(7): 3375-3379. doi: 10.7498/aps.54.3375
计量
  • 文章访问数:  14699
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-02-03
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回