-
三氧化钨(WO3)是一种典型的电致变色材料,因其出色的光-电特性成为科学研究和工程应用的热点材料。WO3的电致变色性能受其氧空位浓度和分布的影响,进而调控其变色效率和稳定性。现有调控方法多为以退火为代表的高温处理,无法维持薄膜的低结晶度,因而导致循环性能下降。本研究采用等离子体处理技术调控WO3薄膜氧空位的生成和分布,采用X射线衍射、扫描电子显微镜、光电测试和循环伏安法等对处理后薄膜进行表征,确定其微观结构和氧空位水平,获得氧空位对电致变色性能的调控规律,并与氩气环境退火所得薄膜进行对比。结果表明,等离子体处理能够显著提高WO3薄膜的表面氧空位浓度,并在薄膜深度方向形成梯度氧空位分布。与原始薄膜和氩气退火制备的薄膜相比,等离子体处理优化后的氧空位分布显著增强了WO3薄膜的电子注入和抽出能力,薄膜光学调制范围提升至85%,且具有更快的变色响应速度和更好的循环稳定性。In recent years, electrochromic materials have been extensively utilized in smart windows, displays, and dimmable devices. WO3 has garnered significant attention as a typical electrochromic material. Existing research indicates that the concentration and distribution of oxygen vacancies in WO3 is a crucial factor in determining electrochromic effect. However, traditional preparation methods such as annealing is reported to result in considerable reduction in modulation capacity of crystallinity and optical performance. Hence, proposing a novel approach to enhance the electrochromic properties of WO3 films holds important research significance and application prospects. Here in this paper, the electrochromic properties of WO3 thin films is enhanced by increasing the oxygen vacancy concentration as well as forming its gradient distribution on the surface through plasma treatment. Firstly, the oxygen vacancy concentration and distribution of the film are optimized by regulating the power and duration of the plasma treatment. Subsequently, the structure and optical properties of the plasma treated WO3 films are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Finally, the stability and response speed of the films during the electrochromic cycle are evaluated via electrochemical tests. Through plasma treatment, the concentration of oxygen vacancies on the surface of WO3 films is significantly increased, and a gradient distribution is formed, which is conducive to enhancing the injection and extraction ability of electrons. The treated WO3 films demonstrate better electrochemical stability and chromic stability during the electrochromic cycle, and the transparency and electrochromic response speed are also significantly enhanced. Additionally, by increasing the concentration of oxygen vacancies through plasma treatment, the band gap of the film decreases and the electrical conductivity increases, which further validates the effectiveness of modulating concentration of oxygen vacancies on the electrical conductivity of WO3 films. Generally, the results indicate that plasma treatment as an emerging approach to significantly improve the electrochromic properties of WO3 films.
-
Keywords:
- WO3 /
- Oxygen vacancy /
- Plasma /
- Electrochromism
-
[1] Thai L H, Thanh N, Le T, Hiep N M, Khan D T, Dat T N, Truong S, Le V T, Truong T Q, Sinh L H 2024 Sol. Energ. Mat. So.l C. 278 113179
[2] Invernale M A, Ding Y J, Sotzing G A 2010 ACS Appl. Mater. Interfaces 2 296
[3] Liu L, Wang T, He Z B, Yi Y, Wang M Y, Luo Z H, Liu Q R, Huang J L, Zhong X L, Du K, Diao, X G 2021 Chem. Eng. J. 414 128892
[4] Zhang D S, Wang J X, Tong Z F, Ji H B, Qu H Y 2021 Adv. Funct. Mater. 31 45
[5] Shao G W, Yu R, Fu T, Chen N L, Liu X Y 2022 Acta Phys. Sin. 71 028201 (in Chinese) [邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳 2022 物理学报 71 028201]
[6] Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 物理学报 65 168201]
[7] Shi, Y D, Sun M J, Zhang Y, Cui J W, Shu X, Wang Y, Qin Y Q, Liu J Q, Tan H H, Wu Y C 2020 ACS Appl. Mater. Interfaces 12 32658
[8] Wang X Q, Yang Y, Jin Q Y, Lou Q C, Hu Q Z, Xie Z L, Song W J 2023Adv. Funct. Mater. 33 2214417
[9] Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L 2023 J. Mater. Chem. A 10 14171
[10] Shi Y D, Sun M J, Zhang Y, Cui J W, Wang Y, Shu X, Qin Y, Tan H H, Liu J Q, Wu Y C 2020Sol. Energ. Mat. So.l C. 212 110579
[11] Yu H, Guo J J, Wang C, Zhang J Y, Liu J, Dong G B, Zhong X L, Diao X G 2020 Electrochim. Acta 332 135504
[12] Li Z X, Liu Z F, Li J W, Yan W G 2022 Colloids Surf. A Physicochem Eng. Aspects 641 128615
[13] Qiao N, Wei P, Xing Y F, Qin X S, Wang X, Li X, Bu L J, Lu G H, Zhu Y W 2022 Adv. Mater. Interfaces9 2200713
[14] Qiu Y M, Wei P, Wang Z H, Lu W L, Jiang Y H, Zhang C F, Qu Y Q, LuG H 2018 Phys. Status Solidi RRL 12 1800297
[15] Xing Y F, Qiao N, Yu J D, Zhang M, Dai J P, Niu T T, Wang Y H, Zhu Y W, Bu L J, LuG H 2022 Rev. Sci. Instrum. 93 073903
[16] Chen J F, Zhu L F 2023 Acta Phys. Sin. 73 095201 (in Chinese) [陈锦峰, 朱林繁 2023 物理学报 73 095201]
[17] Shen Z C, Jiang Y H, Yu J D, Zhu Y W, Bu L J, LuG H 2020 Adv. Mater. Interfaces 8 2101476
[18] Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W, Fu G T 2020 Carbon Energy 5 2637-9368
[19] Zhang G B, Xiong T F, Yan M Y, He L, Liao X B, He C Q, Yin C S, Zhang H N, Mai L Q 2018 Nano Energy 49 555
[20] Jiang P G, Wang Z B, Yan Y P 2017 Acta Phys. Sin. 66 086801 (in Chinese) [姜国平, 汪正兵, 闫永潘 2017 物理学报 66 086801]
[21] Zhu Y W, Qiao N, Dong S Q, Qu G, Chen Y, Lu W L, Qin Z Z, Li D F,Wu K N, Nie Y J, Li S T, Lu G H 2022 Chem. Mater. 34 6505
[22] Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]
[23] Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 物理学报 65 156301]
[24] Stampfl C, Van de Walle C 1999 Phys. Rev. B 59 5521
[25] Arvizu M A, Qu H Y, Cindemir U, Qiu Z, Rojas-González E A, Primetzhofer D, Granqvis, C G,Österlund L, Niklasson G A 1999 J. Mater. Chem. A 7 2908
[26] Khong Y J, Niang K M, Han S, Coburn N J, Wyatt-Moon G, Flewitt A J 2021 Adv. Mater. Interfaces8 210049
[27] Lee S H, Cheong M H, Han S, Tracy C E, Mascarenhas A, Czanderna A W, Deb S K 1999 Appl. Phys. Lett. 75 1541
计量
- 文章访问数: 72
- PDF下载量: 1
- 被引次数: 0