搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体处理构建梯度分布氧空位提升三氧化钨电致变色性能

江以航 曹俸华 栗浩淼 聂永杰 李国倡 魏艳慧 鲁广昊 李盛涛 朱远惟

引用本文:
Citation:

等离子体处理构建梯度分布氧空位提升三氧化钨电致变色性能

江以航, 曹俸华, 栗浩淼, 聂永杰, 李国倡, 魏艳慧, 鲁广昊, 李盛涛, 朱远惟

Improving electrochromic properties of tungsten trioxide by constructing gradient distribution oxygen vacancies through plasma treatment

JIANG Yihang, CAO Fenghua, LI Haomiao, NIE Yongjie, LI Guochang, WEI Yanhui, LU Guanghao, LI Shengtao, ZHU Yuanwei
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 三氧化钨(WO3)是一种典型的电致变色材料, 因其出色的光-电特性成为科学研究和工程应用的热点材料. WO3的电致变色性能受其氧空位浓度和分布的影响, 进而调控其变色效率和稳定性. 现有调控方法多为以退火为代表的高温处理, 无法维持薄膜的低结晶度, 因而导致循环性能下降. 本研究采用等离子体处理技术调控WO3薄膜氧空位的生成和分布, 采用X射线衍射、扫描电子显微镜、光电测试和循环伏安法等对处理后薄膜进行表征, 确定其微观结构和氧空位水平, 获得氧空位对电致变色性能的调控规律, 并与氩气环境退火所得薄膜进行对比. 结果表明, 等离子体处理能够显著地提高WO3薄膜的表面氧空位浓度, 并在薄膜深度方向形成梯度氧空位分布. 与原始薄膜和氩气退火制备的薄膜相比, 等离子体处理优化后的氧空位分布显著地增强了WO3薄膜的电子注入和抽出能力, 薄膜光学调制范围提升至85%, 且具有更快的变色响应速度和更好的循环稳定性.
    In recent years, electrochromic materials have been extensively utilized in smart windows, displays, and dimmable devices. WO3, as a typical electrochromic material has received significant attention. Existing researches indicate that the concentration and distribution of oxygen vacancies in WO3 are both important in determining electrochromic effect. However, it has been reported that traditional preparation methods such as annealing can significantly reduce the ability to modulate the crystallinity and optical performance. Hence, proposing a novel approach to enhance the electrochromic properties of WO3 films holds important research significance and application prospects. In this work, the electrochromic properties of WO3 thin films are enhanced by increasing the oxygen vacancy concentration and forming its gradient distribution on the surface through plasma treatment. Firstly, the oxygen vacancy concentration and distribution of the film are optimized by regulating the power and duration of the plasma treatment. Secondly, the structure and optical properties of the plasma treated WO3 films are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Finally, the stability and response speed of each film during the electrochromic cycle are evaluated via electrochemical tests. Through plasma treatment, the concentrations of oxygen vacancies on the surfaces of WO3 films are all significantly increased, and a gradient distribution is formed, which is conducive to enhancing the ability to inject and extract electrons. The treated WO3 films demonstrate better electrochemical stability and chromic stability during the electrochromic cycle, and their transparencies and electrochromic response speeds are also significantly enhanced. Additionally, by increasing the concentration of oxygen vacancies through plasma treatment, the band gap of the film decreases and the electrical conductivity increases, which further validates the effectiveness of modulating concentration of oxygen vacancies on the electrical conductivity of WO3 film. Overall, these results indicate that plasma treatment is an emerging method of significantly improving the electrochromic properties of WO3 films.
  • 图 1  (a)WO3和(b)缺氧WO3的晶胞结构

    Fig. 1.  Cell structures of (a) WO3 and (b) anoxic WO3.

    图 2  (a) WO3和(b)缺氧WO3的能带结构以及(c)总态密度

    Fig. 2.  (a) Band structure of WO3 and (b) anoxic WO3 and (c) total state density.

    图 3  等离子体改性装置系统示意图

    Fig. 3.  System diagram of plasma modification device.

    图 4  (a)不同处理前后的WO3薄膜XRD测试结果; (b)不同等离子体处理时长前后的WO3薄膜XRD测试结果

    Fig. 4.  (a) XRD results of WO3 films before and after different treatments; (b) XRD results of WO3 films before and after different plasma treatment times.

    图 5  不同处理前后的WO3薄膜拉曼光谱测试结果

    Fig. 5.  Raman spectrum test results of WO3 films before and after different treatments.

    图 6  不同处理前后的SEM图像

    Fig. 6.  SEM images before and after different processing.

    图 7  不同处理前后的 (a) W 4f和(b) O 1s高分辨率XPS光谱; (c)不同处理前后W 4f高分辨率XPS光谱的拟合分峰结果

    Fig. 7.  (a) W 4f and (b) O 1s high-resolution XPS spectra before and after different treatments; (c) fitting peak-splitting results of W 4f high-resolution XPS spectra before and after different treatments.

    图 8  不同处理前后的WO3薄膜 (a) XPS和表面EDS 原子比; (b) 薄膜深度方向原子比

    Fig. 8.  WO3 films before and after different treatment: (a) XPS and surface EDS atomic ratio; (b) film depth direction atomic ratio.

    图 9  等离子体处理前后的WO3薄膜的(a)透过率光谱和(b)带隙能量图

    Fig. 9.  (a) Transmittance spectrum and (b) bandgap energy diagram of WO3 thin films before and after plasma treatment.

    图 10  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜不同电位范围的CV测试和注入和抽出电荷数量

    Fig. 10.  CV tests and charge quantities inserted and extracted for (a) initial preparation, (b) after annealing and (c) after plasma treatment of WO3 films at different potential ranges.

    图 11  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的CV测试和实时光谱透过率以及施加不同电压后的薄膜照片; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜在–1.0和+2.0 V电势下30s的电流密度变化(黑色曲线)、透光率变化(红色曲线)以及在有色和漂白状态之间的切换时间特性

    Fig. 11.  CV test and real-time spectral transmittance of WO3 films at (a) initial preparation, (b) annealing and (c) plasma treatment, and photographs of films at different voltages; (d) changes in current density (black curve), transmittance (red curve) and switching time between colored and bleached WO3 films at -1.0 V and + 2.0 V potentials for 30s after initial preparation, (e) annealing and (f) plasma treatment.

    图 12  (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的长时CV测试; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜的长时透过率测试

    Fig. 12.  Long-term CV tests of WO3 films (a) in their original state, (b) after annealing and (c) after plasma treatment; long term transmittance tests of WO3 films (d) in their original state, (e) after annealing, and (f) after plasma treatment.

    表 1  不同处理工艺方案的四探针电导率测试结果

    Table 1.  Results of four-probe conductivity tests for various treatment schemes.

    样品处理方式 电导率/(10–3 S·m–1)
    原始状态 8.27
    退火处理 25.30
    等离子体处理 10.80
    下载: 导出CSV

    表 2  不同等离子体处理工艺方案设计及测试结果

    Table 2.  Design and test results of different plasma treatment processes.

    等离子体放
    电功率/W
    改性时间/minO/W原子比光学透过率/%
    5102.8684.5
    10202.7581.1
    20302.5874.2
    5202.8382.8
    10302.7178.4
    20102.6879.7
    5302.8080.6
    10102.7983.2
    20202.6376.3
    下载: 导出CSV
  • [1]

    Thai L H, Thanh N, Le T, Hiep N M, Khan D T, Dat T N, Truong S, Le V T, Truong T Q, Sinh L H 2024 Sol. Energy Mater Sol. Cells 278 113179Google Scholar

    [2]

    Invernale M A, Ding Y J, Sotzing G A 2010 ACS Appl. Mater. Interfaces 2 296Google Scholar

    [3]

    Liu L, Wang T, He Z B, Yi Y, Wang M Y, Luo Z H, Liu Q R, Huang J L, Zhong X L, Du K, Diao, X G 2021 Chem. Eng. J. 414 128892Google Scholar

    [4]

    Zhang D S, Wang J X, Tong Z F, Ji H B , Qu H Y 2021 Adv. Funct. Mater. 31 45

    [5]

    邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳 2022 物理学报 71 028201Google Scholar

    Shao G W, Yu R, Fu T, Chen N L, Liu X Y 2022 Acta Phys. Sin. 71 028201Google Scholar

    [6]

    方成, 汪洪, 施思齐 2016 物理学报 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [7]

    Shi, Y D, Sun M J, Zhang Y, Cui J W, Shu X, Wang Y, Qin Y Q, Liu J Q, Tan H H , Wu Y C 2020 ACS Appl. Mater. Interfaces 12 32658

    [8]

    Wang X Q, Yang Y, Jin Q Y, Lou Q C, Hu Q Z, Xie Z L, Song W J 2023 Adv. Funct. Mater. 33 2214417Google Scholar

    [9]

    Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L 2023 J. Mater. Chem. A 10 14171

    [10]

    Shi Y D, Sun M J, Zhang Y, Cui J W, Wang Y, Shu X, Qin Y, Tan H H, Liu J Q, Wu Y C 2020 Sol. Energy Mater. Sol. Cells 212 110579Google Scholar

    [11]

    Yu H, Guo J J, Wang C, Zhang J Y, Liu J, Dong G B, Zhong X L, Diao X G 2020 Electrochim. Acta 332 135504Google Scholar

    [12]

    Li Z X, Liu Z F, Li J W, Yan W G 2022 Colloids Surf. , A 641 128615Google Scholar

    [13]

    Qiao N, Wei P, Xing Y F, Qin X S, Wang X, Li X, Bu L J, Lu G H, Zhu Y W 2022 Adv. Mater. Interfaces 9 2200713Google Scholar

    [14]

    Qiu Y M, Wei P, Wang Z H, Lu W L, Jiang Y H, Zhang C F, Qu Y Q, LuG H 2018 Phys. Status Solidi RRL 12 1800297Google Scholar

    [15]

    Xing Y F, Qiao N, Yu J D, Zhang M, Dai J P, Niu T T, Wang Y H, Zhu Y W, Bu L J, LuG H 2022 Rev. Sci. Instrum. 93 073903Google Scholar

    [16]

    陈锦峰, 朱林繁 2023 物理学报 73 095201

    Chen J F, Zhu L F 2023 Acta Phys. Sin. 73 095201

    [17]

    Shen Z C, Jiang Y H, Yu J D, Zhu Y W, Bu L J, LuG H 2020 Adv. Mater. Interfaces 8 2101476

    [18]

    Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W, Fu G T 2023 Carbon Energy 5 e279Google Scholar

    [19]

    Zhang G B, Xiong T F, Yan M Y, He L, Liao X B, He C Q, Yin C S, Zhang H N, Mai L Q 2018 Nano Energy 49 555Google Scholar

    [20]

    姜国平, 汪正兵, 闫永潘 2017 物理学报 66 086801Google Scholar

    Jiang P G, Wang Z B, Yan Y P 2017 Acta Phys. Sin. 66 086801Google Scholar

    [21]

    Zhu Y W, Qiao N, Dong S Q, Qu G, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar

    [22]

    杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301Google Scholar

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301Google Scholar

    [23]

    薛丽, 任一鸣 2016 物理学报 65 156301Google Scholar

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301Google Scholar

    [24]

    Stampfl C, Van de Walle C 1999 Phys. Rev. B 59 5521Google Scholar

    [25]

    Arvizu M A, Qu H Y, Cindemir U, Qiu Z, Rojas-González E A, Primetzhofer D, Granqvis, C G, Österlund L, Niklasson G A 1999 J. Mater. Chem. A 7 2908

    [26]

    Khong Y J, Niang K M, Han S, Coburn N J, Wyatt-Moon G, Flewitt A J 2021 Adv. Mater. Interfaces 8 210049

    [27]

    Lee S H, Cheong M H, Han S, Tracy C E, Mascarenhas A, Czanderna A W, Deb S K 1999 Appl. Phys. Lett. 75 1541Google Scholar

  • [1] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究. 物理学报, doi: 10.7498/aps.73.20240863
    [2] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, doi: 10.7498/aps.72.20230638
    [3] 张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏. Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应. 物理学报, doi: 10.7498/aps.71.20220609
    [4] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能. 物理学报, doi: 10.7498/aps.71.20211555
    [5] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, doi: 10.7498/aps.70.20202196
    [6] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, doi: 10.7498/aps.68.20190562
    [7] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, doi: 10.7498/aps.67.20181402
    [8] 方成, 汪洪, 施思齐. 氧化钨电致变色性能的研究进展. 物理学报, doi: 10.7498/aps.65.168201
    [9] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, doi: 10.7498/aps.62.153201
    [10] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响. 物理学报, doi: 10.7498/aps.61.197702
    [11] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, doi: 10.7498/aps.60.110209
    [12] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响. 物理学报, doi: 10.7498/aps.60.115201
    [13] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响. 物理学报, doi: 10.7498/aps.60.028104
    [14] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 物理学报, doi: 10.7498/aps.57.7274
    [15] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, doi: 10.7498/aps.55.3711
    [16] 李宝山, 朱志刚, 李国荣, 殷庆瑞, 丁爱丽. 铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应. 物理学报, doi: 10.7498/aps.54.939
    [17] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, doi: 10.7498/aps.53.1145
    [18] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, doi: 10.7498/aps.53.2724
    [19] 代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈 冲. 非晶态WO3薄膜电致变色特性的研究. 物理学报, doi: 10.7498/aps.52.1003
    [20] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究. 物理学报, doi: 10.7498/aps.49.2066
计量
  • 文章访问数:  419
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-29
  • 修回日期:  2025-01-02
  • 上网日期:  2025-01-07

/

返回文章
返回