-
三氧化钨(WO3)是一种典型的电致变色材料, 因其出色的光-电特性成为科学研究和工程应用的热点材料. WO3的电致变色性能受其氧空位浓度和分布的影响, 进而调控其变色效率和稳定性. 现有调控方法多为以退火为代表的高温处理, 无法维持薄膜的低结晶度, 因而导致循环性能下降. 本研究采用等离子体处理技术调控WO3薄膜氧空位的生成和分布, 采用X射线衍射、扫描电子显微镜、光电测试和循环伏安法等对处理后薄膜进行表征, 确定其微观结构和氧空位水平, 获得氧空位对电致变色性能的调控规律, 并与氩气环境退火所得薄膜进行对比. 结果表明, 等离子体处理能够显著地提高WO3薄膜的表面氧空位浓度, 并在薄膜深度方向形成梯度氧空位分布. 与原始薄膜和氩气退火制备的薄膜相比, 等离子体处理优化后的氧空位分布显著地增强了WO3薄膜的电子注入和抽出能力, 薄膜光学调制范围提升至85%, 且具有更快的变色响应速度和更好的循环稳定性.In recent years, electrochromic materials have been extensively utilized in smart windows, displays, and dimmable devices. WO3, as a typical electrochromic material has received significant attention. Existing researches indicate that the concentration and distribution of oxygen vacancies in WO3 are both important in determining electrochromic effect. However, it has been reported that traditional preparation methods such as annealing can significantly reduce the ability to modulate the crystallinity and optical performance. Hence, proposing a novel approach to enhance the electrochromic properties of WO3 films holds important research significance and application prospects. In this work, the electrochromic properties of WO3 thin films are enhanced by increasing the oxygen vacancy concentration and forming its gradient distribution on the surface through plasma treatment. Firstly, the oxygen vacancy concentration and distribution of the film are optimized by regulating the power and duration of the plasma treatment. Secondly, the structure and optical properties of the plasma treated WO3 films are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Finally, the stability and response speed of each film during the electrochromic cycle are evaluated via electrochemical tests. Through plasma treatment, the concentrations of oxygen vacancies on the surfaces of WO3 films are all significantly increased, and a gradient distribution is formed, which is conducive to enhancing the ability to inject and extract electrons. The treated WO3 films demonstrate better electrochemical stability and chromic stability during the electrochromic cycle, and their transparencies and electrochromic response speeds are also significantly enhanced. Additionally, by increasing the concentration of oxygen vacancies through plasma treatment, the band gap of the film decreases and the electrical conductivity increases, which further validates the effectiveness of modulating concentration of oxygen vacancies on the electrical conductivity of WO3 film. Overall, these results indicate that plasma treatment is an emerging method of significantly improving the electrochromic properties of WO3 films.
-
Keywords:
- WO3 /
- oxygen vacancy /
- plasma /
- electrochromism
-
图 11 (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的CV测试和实时光谱透过率以及施加不同电压后的薄膜照片; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜在–1.0和+2.0 V电势下30s的电流密度变化(黑色曲线)、透光率变化(红色曲线)以及在有色和漂白状态之间的切换时间特性
Fig. 11. CV test and real-time spectral transmittance of WO3 films at (a) initial preparation, (b) annealing and (c) plasma treatment, and photographs of films at different voltages; (d) changes in current density (black curve), transmittance (red curve) and switching time between colored and bleached WO3 films at -1.0 V and + 2.0 V potentials for 30s after initial preparation, (e) annealing and (f) plasma treatment.
图 12 (a)原始状态、(b)退火处理后和(c)等离子体处理后WO3薄膜的长时CV测试; (d)原始状态、(e)退火处理后和(f)等离子体处理后WO3薄膜的长时透过率测试
Fig. 12. Long-term CV tests of WO3 films (a) in their original state, (b) after annealing and (c) after plasma treatment; long term transmittance tests of WO3 films (d) in their original state, (e) after annealing, and (f) after plasma treatment.
表 1 不同处理工艺方案的四探针电导率测试结果
Table 1. Results of four-probe conductivity tests for various treatment schemes.
样品处理方式 电导率/(10–3 S·m–1) 原始状态 8.27 退火处理 25.30 等离子体处理 10.80 表 2 不同等离子体处理工艺方案设计及测试结果
Table 2. Design and test results of different plasma treatment processes.
等离子体放
电功率/W改性时间/min O/W原子比 光学透过率/% 5 10 2.86 84.5 10 20 2.75 81.1 20 30 2.58 74.2 5 20 2.83 82.8 10 30 2.71 78.4 20 10 2.68 79.7 5 30 2.80 80.6 10 10 2.79 83.2 20 20 2.63 76.3 -
[1] Thai L H, Thanh N, Le T, Hiep N M, Khan D T, Dat T N, Truong S, Le V T, Truong T Q, Sinh L H 2024 Sol. Energy Mater Sol. Cells 278 113179
Google Scholar
[2] Invernale M A, Ding Y J, Sotzing G A 2010 ACS Appl. Mater. Interfaces 2 296
Google Scholar
[3] Liu L, Wang T, He Z B, Yi Y, Wang M Y, Luo Z H, Liu Q R, Huang J L, Zhong X L, Du K, Diao, X G 2021 Chem. Eng. J. 414 128892
Google Scholar
[4] Zhang D S, Wang J X, Tong Z F, Ji H B , Qu H Y 2021 Adv. Funct. Mater. 31 45
[5] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳 2022 物理学报 71 028201
Google Scholar
Shao G W, Yu R, Fu T, Chen N L, Liu X Y 2022 Acta Phys. Sin. 71 028201
Google Scholar
[6] 方成, 汪洪, 施思齐 2016 物理学报 65 168201
Google Scholar
Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201
Google Scholar
[7] Shi, Y D, Sun M J, Zhang Y, Cui J W, Shu X, Wang Y, Qin Y Q, Liu J Q, Tan H H , Wu Y C 2020 ACS Appl. Mater. Interfaces 12 32658
[8] Wang X Q, Yang Y, Jin Q Y, Lou Q C, Hu Q Z, Xie Z L, Song W J 2023 Adv. Funct. Mater. 33 2214417
Google Scholar
[9] Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L 2023 J. Mater. Chem. A 10 14171
[10] Shi Y D, Sun M J, Zhang Y, Cui J W, Wang Y, Shu X, Qin Y, Tan H H, Liu J Q, Wu Y C 2020 Sol. Energy Mater. Sol. Cells 212 110579
Google Scholar
[11] Yu H, Guo J J, Wang C, Zhang J Y, Liu J, Dong G B, Zhong X L, Diao X G 2020 Electrochim. Acta 332 135504
Google Scholar
[12] Li Z X, Liu Z F, Li J W, Yan W G 2022 Colloids Surf. , A 641 128615
Google Scholar
[13] Qiao N, Wei P, Xing Y F, Qin X S, Wang X, Li X, Bu L J, Lu G H, Zhu Y W 2022 Adv. Mater. Interfaces 9 2200713
Google Scholar
[14] Qiu Y M, Wei P, Wang Z H, Lu W L, Jiang Y H, Zhang C F, Qu Y Q, LuG H 2018 Phys. Status Solidi RRL 12 1800297
Google Scholar
[15] Xing Y F, Qiao N, Yu J D, Zhang M, Dai J P, Niu T T, Wang Y H, Zhu Y W, Bu L J, LuG H 2022 Rev. Sci. Instrum. 93 073903
Google Scholar
[16] 陈锦峰, 朱林繁 2023 物理学报 73 095201
Chen J F, Zhu L F 2023 Acta Phys. Sin. 73 095201
[17] Shen Z C, Jiang Y H, Yu J D, Zhu Y W, Bu L J, LuG H 2020 Adv. Mater. Interfaces 8 2101476
[18] Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W, Fu G T 2023 Carbon Energy 5 e279
Google Scholar
[19] Zhang G B, Xiong T F, Yan M Y, He L, Liao X B, He C Q, Yin C S, Zhang H N, Mai L Q 2018 Nano Energy 49 555
Google Scholar
[20] 姜国平, 汪正兵, 闫永潘 2017 物理学报 66 086801
Google Scholar
Jiang P G, Wang Z B, Yan Y P 2017 Acta Phys. Sin. 66 086801
Google Scholar
[21] Zhu Y W, Qiao N, Dong S Q, Qu G, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Li S T, Lu G H 2022 Chem. Mater. 34 6505
Google Scholar
[22] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301
Google Scholar
Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301
Google Scholar
[23] 薛丽, 任一鸣 2016 物理学报 65 156301
Google Scholar
Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301
Google Scholar
[24] Stampfl C, Van de Walle C 1999 Phys. Rev. B 59 5521
Google Scholar
[25] Arvizu M A, Qu H Y, Cindemir U, Qiu Z, Rojas-González E A, Primetzhofer D, Granqvis, C G, Österlund L, Niklasson G A 1999 J. Mater. Chem. A 7 2908
[26] Khong Y J, Niang K M, Han S, Coburn N J, Wyatt-Moon G, Flewitt A J 2021 Adv. Mater. Interfaces 8 210049
[27] Lee S H, Cheong M H, Han S, Tracy C E, Mascarenhas A, Czanderna A W, Deb S K 1999 Appl. Phys. Lett. 75 1541
Google Scholar
计量
- 文章访问数: 419
- PDF下载量: 5
- 被引次数: 0