搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氧化钨晶体拓扑结构生长行为及其电致变色性能

邵光伟 于瑞 傅婷 陈南梁 刘向阳

引用本文:
Citation:

三氧化钨晶体拓扑结构生长行为及其电致变色性能

邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳

Growth behavior of WO3 crystal topological structure and its electrochromic properties

Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang
PDF
HTML
导出引用
  • 本研究利用种子层辅助的水热反应法, 在导电玻璃上沉积生长三氧化钨(WO3)晶体结构薄膜. 通过调控水热反应溶液中盐酸、草酸的浓度以及后处理温度, 分别得到花朵状、海胆状和多孔花瓣状的WO3晶体结构薄膜. 采用扫描电子显微镜、X射线衍射、透射电子显微镜和电化学表征等手段研究了不同拓扑结构形成的机理及其对WO3电致变色性能的影响. 结果表明: 盐酸中的Cl具有促进WO3晶体沿c轴方向生长的作用, 而草酸具有促进WO3晶体沿a轴方向生长的作用; 微米海胆状WO3的着色效率为42.37 cm2/C, 远远大于WO3花朵状(15.21 cm2/C)和花瓣状(12.71 cm2/C)的着色效率; 经过淬冷处理的微米花WO3表面呈多孔结构, 其着色效率高达56.95 cm2/C, 是未淬冷处理、表面光滑微米花WO3着色效率的近4倍, 同时也优于微米海胆状WO3的着色效率.
    In this work, WO3 crystal structure films are deposited on conductive glass substrates by seed layer assisted hydrothermal reaction method. Through controlling the concentration of hydrochloric acid, oxalic acid, and the hydrothermal postprocessing temperature, the micro-peony, micro urchin-like, and porous petal-like WO3 crystal structures are obtained respectively. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical characterization are used to study the formation mechanism of different structures and their effects on the electrochromic properties of WO3 films. The Cl in HCl has a strong promoting role towards the c axis in WO3 crystal growth and oxalic acid has a promoting effect towards an a axis. In terms of color efficiency, the CE value of micro-urchin is 42.37 cm2/C, far greater than those of two other WO3 structures, 15.21 cm2/C and 12.71 cm2/C. Owing to the cold-water quenching treatment, the CE value of WO3 micro-peony with porous surface structure is 56.95 cm2/C, quadruple CE value of the smooth surface structure, slightly better than that of the micro-urchin structure.
      通信作者: 于瑞, liuxy@xmu.edu.cn ; 刘向阳, yurui@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074322)、中央高校基本科研业务费专项资金和东华大学研究生创新基金(批准号: CUSF-DH-D-2019046)资助的课题
      Corresponding author: Yu Rui, liuxy@xmu.edu.cn ; Liu Xiang-Yang, yurui@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074322), the Fundamental Research Funds for the Central Universities, and the Graduate Student Innovation Fund of Donghua University, China (Grant No. CUSF-DH-D-2019046).
    [1]

    Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar

    [2]

    He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar

    [3]

    汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001

    Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001

    [4]

    Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar

    [5]

    史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar

    Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar

    [6]

    Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar

    [7]

    刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181

    Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181

    [8]

    Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar

    [9]

    Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar

    [10]

    Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar

    [11]

    Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar

    [12]

    Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar

    [13]

    Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar

    [14]

    Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar

    [15]

    方成, 汪洪, 施思奇 2016 物理学报 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [16]

    Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar

    [17]

    贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar

    Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar

    [18]

    Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182

    [19]

    Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [20]

    Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar

    [21]

    Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar

    [22]

    Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar

    [23]

    Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar

    [24]

    Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar

    [25]

    Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar

    [26]

    Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar

    [27]

    Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar

    [28]

    Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar

    [29]

    Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597

    [30]

    Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar

    [31]

    Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar

    [32]

    Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203

    [33]

    Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795

  • 图 1  不同HCl浓度下生长的WO3晶体拓扑结构的SEM照片 (a) 0 mL; (b) 0.25 mL; (c) 0.50 mL; (d) 0.75 mL

    Fig. 1.  SEM images of WO3 crystal topology structures with different concentration of HCl: (a) 0 mL; (b) 0.25 mL; (c) 0.50 mL; (d) 0.75 mL.

    图 2  不同草酸浓度下生长的WO3晶体拓扑结构的SEM照片 (a) 0 mol/L; (b) 0.05 mol/L; (c) 0.10 mol/L; (d) 0.15 mol/L

    Fig. 2.  SEM images of WO3 crystal topology structures with different concentration of oxalic acid: (a) 0 mol/L; (b) 0.05 mol/L; (c) 0.10 mol/L; (d) 0.15 mol/L.

    图 3  淬冷处理, 多孔WO3微米花晶体结构在不同放大倍数时的SEM照片

    Fig. 3.  SEM images of WO3 micro-peony crystal structures with the porous structure in different magnification.

    图 4  常温处理, 光滑WO3微米花晶体结构在不同放大倍数时的SEM照片

    Fig. 4.  SEM images of WO3 micro-peony crystal structures with the smooth structure in different magnification.

    图 5  不同的微米花晶体拓扑表面结构生长示意图

    Fig. 5.  Schematic illustration of the micro-peony crystal network topology growth mechanism.

    图 6  WO3大、小微米花晶体结构的XRD图谱

    Fig. 6.  XRD patterns of WO3 blooming peony and small peony

    图 7  WO3微米花晶体拓扑结构的TEM照片

    Fig. 7.  TEM images of WO3 micro-peony topology structure.

    图 8  WO3花朵片状晶体拓扑结构的SEM照片

    Fig. 8.  SEM images of WO3 crystal network flower petals assembly process.

    图 9  WO3微米花瓣晶须的生长原理示意图

    Fig. 9.  Schematic diagram of WO3 micro-peony crystal topology structure.

    图 10  花朵状WO3晶体拓扑结构的SEM照片和结构示意图

    Fig. 10.  SEM image of WO3 flower-like topology structure and its simple image.

    图 11  高放大倍率下的花朵片状WO3晶体拓扑结构的SEM照片

    Fig. 11.  SEM images of WO3 micro-peony topology structure with high magnification.

    图 12  不同WO3晶体拓扑结构的循环伏安曲线

    Fig. 12.  CV curves of different WO3 network topologies.

    图 13  WO3样品的多电位阶跃曲线和原位光学反射率曲线

    Fig. 13.  Multi-potential and reflectancecurves of WO3 sample

    图 14  3种典型的WO3晶体拓扑结构的原位光学密度和电荷密度的变化曲线

    Fig. 14.  Variation curves of the in situ optical density (∆OD) vs. charge density for the typical mesoscopic WO3 crystalline patterns.

  • [1]

    Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar

    [2]

    He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar

    [3]

    汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001

    Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001

    [4]

    Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar

    [5]

    史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar

    Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar

    [6]

    Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar

    [7]

    刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181

    Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181

    [8]

    Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar

    [9]

    Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar

    [10]

    Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar

    [11]

    Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar

    [12]

    Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar

    [13]

    Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar

    [14]

    Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar

    [15]

    方成, 汪洪, 施思奇 2016 物理学报 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [16]

    Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar

    [17]

    贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar

    Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar

    [18]

    Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182

    [19]

    Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [20]

    Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar

    [21]

    Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar

    [22]

    Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar

    [23]

    Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar

    [24]

    Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar

    [25]

    Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar

    [26]

    Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar

    [27]

    Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar

    [28]

    Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar

    [29]

    Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597

    [30]

    Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar

    [31]

    Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar

    [32]

    Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203

    [33]

    Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795

  • [1] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [2] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. WO3晶体拓扑结构生长行为及其电致变色性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211555
    [3] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛. 基于水热法制备三氧化钼纳米片的人工突触器件. 物理学报, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [4] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [5] 方成, 汪洪, 施思齐. 氧化钨电致变色性能的研究进展. 物理学报, 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [6] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [7] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响. 物理学报, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [8] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性. 物理学报, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [9] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响. 物理学报, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [10] 贾相华, 吕树臣, 孙江亭, 彭鸿雁, 张梅恒. WO3对掺铒碲酸盐玻璃光谱性质的影响. 物理学报, 2008, 57(9): 5978-5982. doi: 10.7498/aps.57.5978
    [11] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究. 物理学报, 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [12] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [13] 吴 荣, 郑毓峰, 张校刚, 孙言飞, 徐金宝. EDTA辅助水热合成FeS2/NiSe2复合纳米晶及其薄膜光电性质. 物理学报, 2004, 53(10): 3493-3497. doi: 10.7498/aps.53.3493
    [14] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [15] 羊新胜, 陈 敏, 王 豫. Tb4O7掺杂的WO3陶瓷的高温热电现象. 物理学报, 2003, 52(6): 1545-1548. doi: 10.7498/aps.52.1545
    [16] 代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈 冲. 非晶态WO3薄膜电致变色特性的研究. 物理学报, 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [17] 陈丹平, 姜雄伟, 朱从善. Bi2O3-Li2O玻璃的热致变色研究. 物理学报, 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [18] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究. 物理学报, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
    [19] 崔敬忠, 达道安, 姜万顺. VO2热致变色薄膜的结构和光电特性研究. 物理学报, 1998, 47(3): 454-460. doi: 10.7498/aps.47.454
    [20] 吴述尧, 陈芸琪, 齐上雪, 姜兆学, 林彰达, 王志宽, 舒代萱. WO3表面的氧缺陷. 物理学报, 1986, 35(5): 662-666. doi: 10.7498/aps.35.662
计量
  • 文章访问数:  6472
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-24
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回