-
本研究利用种子层辅助的水热反应法, 在导电玻璃上沉积生长三氧化钨(WO3)晶体结构薄膜. 通过调控水热反应溶液中盐酸、草酸的浓度以及后处理温度, 分别得到花朵状、海胆状和多孔花瓣状的WO3晶体结构薄膜. 采用扫描电子显微镜、X射线衍射、透射电子显微镜和电化学表征等手段研究了不同拓扑结构形成的机理及其对WO3电致变色性能的影响. 结果表明: 盐酸中的Cl–具有促进WO3晶体沿c轴方向生长的作用, 而草酸具有促进WO3晶体沿a轴方向生长的作用; 微米海胆状WO3的着色效率为42.37 cm2/C, 远远大于WO3花朵状(15.21 cm2/C)和花瓣状(12.71 cm2/C)的着色效率; 经过淬冷处理的微米花WO3表面呈多孔结构, 其着色效率高达56.95 cm2/C, 是未淬冷处理、表面光滑微米花WO3着色效率的近4倍, 同时也优于微米海胆状WO3的着色效率.In this work, WO3 crystal structure films are deposited on conductive glass substrates by seed layer assisted hydrothermal reaction method. Through controlling the concentration of hydrochloric acid, oxalic acid, and the hydrothermal postprocessing temperature, the micro-peony, micro urchin-like, and porous petal-like WO3 crystal structures are obtained respectively. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical characterization are used to study the formation mechanism of different structures and their effects on the electrochromic properties of WO3 films. The Cl– in HCl has a strong promoting role towards the c axis in WO3 crystal growth and oxalic acid has a promoting effect towards an a axis. In terms of color efficiency, the CE value of micro-urchin is 42.37 cm2/C, far greater than those of two other WO3 structures, 15.21 cm2/C and 12.71 cm2/C. Owing to the cold-water quenching treatment, the CE value of WO3 micro-peony with porous surface structure is 56.95 cm2/C, quadruple CE value of the smooth surface structure, slightly better than that of the micro-urchin structure.
[1] Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar
[2] He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar
[3] 汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001
Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001
[4] Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar
[5] 史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar
Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar
[6] Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar
[7] 刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181
Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181
[8] Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar
[9] Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar
[10] Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar
[11] Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar
[12] Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar
[13] Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar
[14] Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar
[15] 方成, 汪洪, 施思奇 2016 物理学报 65 168201Google Scholar
Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar
[16] Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar
[17] 贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar
Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar
[18] Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182
[19] Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar
[20] Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar
[21] Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar
[22] Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar
[23] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar
[24] Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar
[25] Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar
[26] Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar
[27] Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar
[28] Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar
[29] Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597
[30] Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar
[31] Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar
[32] Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203
[33] Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795
-
-
[1] Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar
[2] He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar
[3] 汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001
Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001
[4] Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar
[5] 史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar
Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar
[6] Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar
[7] 刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181
Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181
[8] Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar
[9] Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar
[10] Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar
[11] Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar
[12] Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar
[13] Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar
[14] Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar
[15] 方成, 汪洪, 施思奇 2016 物理学报 65 168201Google Scholar
Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar
[16] Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar
[17] 贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar
Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar
[18] Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182
[19] Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar
[20] Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar
[21] Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar
[22] Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar
[23] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar
[24] Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar
[25] Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar
[26] Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar
[27] Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar
[28] Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar
[29] Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597
[30] Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar
[31] Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar
[32] Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203
[33] Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795
计量
- 文章访问数: 7835
- PDF下载量: 144
- 被引次数: 0