-
得益于高达4.8 eV的禁带宽度, 超宽禁带半导体氧化镓(Ga2O3)在深紫外探测领域具有天然的优势. 考虑到光电探测器在高温领域具有十分重要的用途, 本文研究了一种WO3/β-Ga2O3异质结深紫外光电探测器以及高温对其探测性能的影响. 利用金属有机化学气相沉积(MOCVD)技术制备了Ga2O3薄膜, 并采用旋涂和磁控溅射技术分别制备了WO3薄膜和Ti/Au欧姆电极. 在室温(300 K)下, 该探测器的光暗电流比为3.05×106, 响应度为2.7 mA/W, 探测度为1.51×1013 Jones, 外量子效率为1.32%. 随着温度的升高, 器件的暗电流增加、光电流减少, 导致上述光电探测性能的下降. 为了理清高温环境下探测性能退化的内在物理机制, 研究了温度对光生载流子产生—复合过程的影响, 继而阐明了高温对光电流增益机制的影响. 研究发现, WO3/β-Ga2O3异质结光电探测器能够在450 K的高温环境中实现稳定的自供电工作, 表明全氧化物异质结探测器在恶劣探测环境中具有应用潜力.Owing to the high bandgap of up to 4.8 eV, Ga2O3 has a natural advantage in the field of deep-ultraviolet (DUV) detection. The Ga2O3-based photoconductors, Schottky and heterojunction detectors are proposed and show excellent photodetection performance. The Ga2O3 heterojunction detectors are self-driven and feature low power consumption. On the other hand, considering the ultra-wide bandgap and low intrinsic carrier concentration, Ga2O3-based photodetectors are exhibiting important applications in high-temperature photodetection. In this work, a WO3/β-Ga2O3 heterojunction DUV photodetector is constructed and the effect of high temperature on its detection performance is investigated. The β-Ga2O3 films are prepared by metal-organic chemical vapor deposition (MOCVD), and WO3 films and Ti/Au ohmic electrodes are prepared by spin-coating technology and magnetron sputtering technique, respectively. The current-voltage (I-V) and current-time (I-t) measurements are performed at different ambient temperatures. Parameters including light-dark-current ratio (PDCR), responsivity (R), detectivity (D*), and external quantum efficiency (EQE) are extracted to evaluate the deep-ultraviolet detection performance and its high-temperature stability. At room temperature (300 K), the PDCR, the R, the D*, and the EQE of the detector are 3.05×106, 2.7 mA/W, 1.51×1013 Jones, and 1.32%, respectively. As the temperature increases, the dark current of the device increases and the photocurrent decreases, resulting in the degradation of the photodetection performance. To explore the physical mechanism behind the degradation of the detection performance, the effect of temperature on the carrier generation-combination process is investigated. It is found that the Shockley-Read-Hall (SRH) generation-combination mechanism is enhanced with the increase of temperature. Recombination centers are introduced from the crystal defects and interfacial defects, which originate mainly from the SRH process. Specifically, the dark current comes mainly from the depletion region of WO3/β-Ga2O3, and the carrier generation rate in the depletion region is enhanced with temperature increasing, which leads to the rise of dark current. Similarly, the increase of temperature leads to the improvement of the recombination process, therefore the photocurrent decreases at a higher temperature. This effect can also well explain the variation of response time at a high temperature. Overall, it is exhibited that the WO3/β-Ga2O3 heterojunction photodetector can achieve stable self-powered operation even at an ambient temperature of 450 K, indicating that the all-oxide heterojunction detector has potential applications in harsh detection environments.
-
Keywords:
- β-Ga2O3 /
- WO3 /
- deep ultraviolet detection /
- high-temperature
[1] Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[2] Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar
[3] Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar
[4] Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar
[5] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[6] Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar
[7] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[8] Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar
[9] Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar
[10] Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar
[11] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar
[12] Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar
[13] Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar
[14] Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar
[15] Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar
[16] Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar
[17] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar
[18] Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar
[19] Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar
[20] Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar
[21] Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar
[22] Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar
[23] Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar
[24] Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[27] Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[28] Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar
[29] Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar
[30] Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar
[31] Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar
[32] Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar
[33] Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar
[34] Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar
[35] Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar
[36] Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar
[37] Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar
[38] Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar
[39] Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar
[40] Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar
[41] Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar
[42] Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar
[43] Rose A 1955 Phys. Rev. 97 322Google Scholar
[44] Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar
[45] Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar
[46] Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar
[47] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar
[48] Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar
[49] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[50] Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar
[51] Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar
[52] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar
[53] Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar
[54] Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar
[55] Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar
[56] Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar
[57] Schenk A 1992 Solid State Electron. 35 1585Google Scholar
[58] Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar
-
图 1 (a) WO3/β-Ga2O3异质结光电探测器结构示意图; (b) WO3表面的SEM图; (c) WO3表面XPS图; (d), (e) W 4f5/2, W 4f7/2和O 1s的结合能
Fig. 1. (a) Schematic diagram of WO3/β-Ga2O3 heterojunction PD; (b) SEM image of the WO3 surface; (c) XPS spectrum of the WO3 thin film; (d), (e) binding energies for W 4f5/2, W 4f7/2 and O 1s, respectively.
表 1 不同Ga2O3异质结光电探测器性能比较
Table 1. Comparison of performance for several Ga2O3 heterojunction photodetectors.
PD Self-powered UV light/nm PDCR R/(mA·W–1) D/Jones Ref. MoS2/β-Ga2O3 Yes 245 ~1.3×104 2.1 1.21×1011 [14] ZnO/β-Ga2O3 Yes 251 ~1.0×104 9.7 6.29×1012 [51] Diamond/β-Ga2O3 Yes 244 37.0 0.2 6.99×109 [52] CuI/β-Ga2O3 Yes 254 4.0×103 8.5 6.30×1012 [53] 4H-SiC/β-Ga2O3 Yes 254 1.7×103 10.4 8.80×109 [54] NiO/Ga2O3 Yes 254 ~1.0×102 0.3 1.81×108 [55] CuCrO2/Ga2O3 Yes 254 3.5×104 0.1 4.70×1011 [56] WO3/β-Ga2O3 Yes 254 3.5×106 2.7 1.51×1013 本文 -
[1] Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[2] Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar
[3] Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar
[4] Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar
[5] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[6] Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar
[7] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[8] Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar
[9] Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar
[10] Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar
[11] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar
[12] Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar
[13] Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar
[14] Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar
[15] Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar
[16] Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar
[17] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar
[18] Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar
[19] Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar
[20] Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar
[21] Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar
[22] Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar
[23] Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar
[24] Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[27] Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[28] Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar
[29] Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar
[30] Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar
[31] Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar
[32] Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar
[33] Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar
[34] Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar
[35] Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar
[36] Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar
[37] Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar
[38] Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar
[39] Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar
[40] Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar
[41] Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar
[42] Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar
[43] Rose A 1955 Phys. Rev. 97 322Google Scholar
[44] Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar
[45] Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar
[46] Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar
[47] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar
[48] Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar
[49] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[50] Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar
[51] Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar
[52] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar
[53] Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar
[54] Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar
[55] Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar
[56] Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar
[57] Schenk A 1992 Solid State Electron. 35 1585Google Scholar
[58] Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar
计量
- 文章访问数: 4745
- PDF下载量: 201
- 被引次数: 0