搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3/β-Ga2O3异质结深紫外光电探测器的高温性能

张茂林 马万煜 王磊 刘增 杨莉莉 李山 唐为华 郭宇锋

引用本文:
Citation:

WO3/β-Ga2O3异质结深紫外光电探测器的高温性能

张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋

Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors

Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng
PDF
HTML
导出引用
  • 得益于高达4.8 eV的禁带宽度, 超宽禁带半导体氧化镓(Ga2O3)在深紫外探测领域具有天然的优势. 考虑到光电探测器在高温领域具有十分重要的用途, 本文研究了一种WO3/β-Ga2O3异质结深紫外光电探测器以及高温对其探测性能的影响. 利用金属有机化学气相沉积(MOCVD)技术制备了Ga2O3薄膜, 并采用旋涂和磁控溅射技术分别制备了WO3薄膜和Ti/Au欧姆电极. 在室温(300 K)下, 该探测器的光暗电流比为3.05×106, 响应度为2.7 mA/W, 探测度为1.51×1013 Jones, 外量子效率为1.32%. 随着温度的升高, 器件的暗电流增加、光电流减少, 导致上述光电探测性能的下降. 为了理清高温环境下探测性能退化的内在物理机制, 研究了温度对光生载流子产生—复合过程的影响, 继而阐明了高温对光电流增益机制的影响. 研究发现, WO3/β-Ga2O3异质结光电探测器能够在450 K的高温环境中实现稳定的自供电工作, 表明全氧化物异质结探测器在恶劣探测环境中具有应用潜力.
    Owing to the high bandgap of up to 4.8 eV, Ga2O3 has a natural advantage in the field of deep-ultraviolet (DUV) detection. The Ga2O3-based photoconductors, Schottky and heterojunction detectors are proposed and show excellent photodetection performance. The Ga2O3 heterojunction detectors are self-driven and feature low power consumption. On the other hand, considering the ultra-wide bandgap and low intrinsic carrier concentration, Ga2O3-based photodetectors are exhibiting important applications in high-temperature photodetection. In this work, a WO3/β-Ga2O3 heterojunction DUV photodetector is constructed and the effect of high temperature on its detection performance is investigated. The β-Ga2O3 films are prepared by metal-organic chemical vapor deposition (MOCVD), and WO3 films and Ti/Au ohmic electrodes are prepared by spin-coating technology and magnetron sputtering technique, respectively. The current-voltage (I-V) and current-time (I-t) measurements are performed at different ambient temperatures. Parameters including light-dark-current ratio (PDCR), responsivity (R), detectivity (D*), and external quantum efficiency (EQE) are extracted to evaluate the deep-ultraviolet detection performance and its high-temperature stability. At room temperature (300 K), the PDCR, the R, the D*, and the EQE of the detector are 3.05×106, 2.7 mA/W, 1.51×1013 Jones, and 1.32%, respectively. As the temperature increases, the dark current of the device increases and the photocurrent decreases, resulting in the degradation of the photodetection performance. To explore the physical mechanism behind the degradation of the detection performance, the effect of temperature on the carrier generation-combination process is investigated. It is found that the Shockley-Read-Hall (SRH) generation-combination mechanism is enhanced with the increase of temperature. Recombination centers are introduced from the crystal defects and interfacial defects, which originate mainly from the SRH process. Specifically, the dark current comes mainly from the depletion region of WO3/β-Ga2O3, and the carrier generation rate in the depletion region is enhanced with temperature increasing, which leads to the rise of dark current. Similarly, the increase of temperature leads to the improvement of the recombination process, therefore the photocurrent decreases at a higher temperature. This effect can also well explain the variation of response time at a high temperature. Overall, it is exhibited that the WO3/β-Ga2O3 heterojunction photodetector can achieve stable self-powered operation even at an ambient temperature of 450 K, indicating that the all-oxide heterojunction detector has potential applications in harsh detection environments.
      通信作者: 唐为华, whtang@njupt.edu.cn ; 郭宇锋, yfguo@njupt.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3605404)、中国博士后科学基金(批准号: 2022M721689)、江苏省卓越博士后计划和国家自然科学基金(批准号: 61874059, 62204125)资助的课题.
      Corresponding author: Tang Wei-Hua, whtang@njupt.edu.cn ; Guo Yu-Feng, yfguo@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605404), the China Post-Doctoral Science Foundation (Grant No. 2022M721689), the Jiangsu Funding Program for Excellent Post-Doctoral Talent, China, and the National Natural Science Foundation of China (Grant Nos. 61874059, 62204125).
    [1]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [2]

    Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar

    [3]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [4]

    Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [6]

    Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar

    [7]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [8]

    Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [9]

    Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar

    [10]

    Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [11]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [12]

    Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar

    [13]

    Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar

    [14]

    Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar

    [15]

    Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar

    [16]

    Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar

    [17]

    Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar

    [18]

    Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar

    [19]

    Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar

    [20]

    Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar

    [21]

    Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar

    [22]

    Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar

    [23]

    Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar

    [24]

    Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [27]

    Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [28]

    Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar

    [29]

    Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar

    [30]

    Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar

    [31]

    Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar

    [32]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [33]

    Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar

    [34]

    Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar

    [35]

    Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar

    [36]

    Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar

    [37]

    Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar

    [38]

    Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar

    [39]

    Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar

    [40]

    Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar

    [41]

    Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar

    [42]

    Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar

    [43]

    Rose A 1955 Phys. Rev. 97 322Google Scholar

    [44]

    Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar

    [45]

    Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar

    [46]

    Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar

    [47]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar

    [48]

    Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar

    [49]

    Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar

    [50]

    Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar

    [51]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [52]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [53]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar

    [54]

    Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar

    [55]

    Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar

    [56]

    Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar

    [57]

    Schenk A 1992 Solid State Electron. 35 1585Google Scholar

    [58]

    Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

  • 图 1  (a) WO3/β-Ga2O3异质结光电探测器结构示意图; (b) WO3表面的SEM图; (c) WO3表面XPS图; (d), (e) W 4f5/2, W 4f7/2和O 1s的结合能

    Fig. 1.  (a) Schematic diagram of WO3/β-Ga2O3 heterojunction PD; (b) SEM image of the WO3 surface; (c) XPS spectrum of the WO3 thin film; (d), (e) binding energies for W 4f5/2, W 4f7/2 and O 1s, respectively.

    图 2  (a) β-Ga2O3薄膜的吸收光谱; (b) WO3薄膜的吸收光谱; (c) WO3/β-Ga2O3异质结光电探测器的响应度光谱

    Fig. 2.  (a) UV-vis absorbance spectrum of the β-Ga2O3 film; (b) UV-vis absorbance spectrum of the WO3 film; (c) spectrem responsivity of the WO3/β-Ga2O3 photodetector.

    图 3  (a) 黑暗下的I-V特性; (b) 光照下的I-V特性; (c) WO3/β-Ga2O3异质结能带结构

    Fig. 3.  (a) I-V characteristics in the dark; (b) I-V characteristics under illuminations; (c) band structure of WO3/β-Ga2O3 heterojunction.

    图 4  不同温度下WO3/β-Ga2O3异质结光电探测器的性能 (a)光电流和暗电流; (b)光暗电流比; (c)响应度; (d) 外量子效率

    Fig. 4.  WO3/β-Ga2O3 heterojunction photodetector at different temperatures: (a) Photocurrent and dark current; (b) photo-to-dark current ratio; (c) responsivity; (d) external quantum efficiency.

    图 5  (a)—(g) WO3/β-Ga2O3异质结光电探测器在不同温度下的I-t特性曲线; (h) 上升与下降时间随温度的变化

    Fig. 5.  (a)–(g) I-t curves of the WO3/β-Ga2O3 heterojunction PD with various temperatures; (h) variation of rise and fall times with temperature.

    表 1  不同Ga2O3异质结光电探测器性能比较

    Table 1.  Comparison of performance for several Ga2O3 heterojunction photodetectors.

    PDSelf-poweredUV light/nmPDCRR/(mA·W–1)D/JonesRef.
    MoS2/β-Ga2O3Yes245~1.3×1042.11.21×1011[14]
    ZnO/β-Ga2O3Yes251~1.0×1049.76.29×1012[51]
    Diamond/β-Ga2O3Yes24437.00.26.99×109[52]
    CuI/β-Ga2O3Yes2544.0×1038.56.30×1012[53]
    4H-SiC/β-Ga2O3Yes2541.7×10310.48.80×109[54]
    NiO/Ga2O3Yes254~1.0×1020.31.81×108[55]
    CuCrO2/Ga2O3Yes2543.5×1040.14.70×1011[56]
    WO3/β-Ga2O3Yes2543.5×1062.71.51×1013本文
    下载: 导出CSV
  • [1]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [2]

    Shepelev V A, Altukhov A A, Gladchenkov E V, Popov A V, Teplova T B, Feshchenko V S, Zhukov A O 2017 Russ. Eng. Res. 37 273Google Scholar

    [3]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [4]

    Guo D Y, Guo Q X, Chen Z W, Wu Z P, Li P G, Tang W H 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [6]

    Xue H W, He Q M, Jian G Z, Long S B, Pang T, Liu M 2018 Nanoscale Res. Lett. 13 290Google Scholar

    [7]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [8]

    Monroy E, Omnès F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [9]

    Wang S L, Chen K, Zhao H L, He C R, Wu C, Guo D Y, Zhao N, Ungar G, Shen J Q, Chu X L, Li P G, Tang W H 2019 RSC Adv. 9 6064Google Scholar

    [10]

    Jaiswal P, Muazzam UI U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [11]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [12]

    Ruan M M, Song L X, Yang Z, Teng Y, Wang Q S, Wang Y Q 2017 J. Mater. Chem. C 5 7161Google Scholar

    [13]

    Chen S C, Chang T C, Liu P T, Wu Y C, Ko C C, Yang S, Feng L W, Sze S M, Chang C Y, Lien C H 2007 Appl. Phys. Lett. 91 213101Google Scholar

    [14]

    Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 10982Google Scholar

    [15]

    Zhuo R R, Wang Y G, Wu D, Lou Z H, Shi Z F, Xu T T, Xu J M, Tian Y T, Li X J 2018 J. Mater. Chem. C 6 299Google Scholar

    [16]

    Pintor-Monroy M I, Barrera D, Murillo-Borjas B L, Ochoa-Estrella F J, Hsu J W P, Quevedo-Lopez M A 2018 ACS Appl. Mater. Interfaces 10 38159Google Scholar

    [17]

    Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P, Tang W H 2021 Chin. Phys. B 30 017302Google Scholar

    [18]

    Ma P P, Zheng J, Zhang Y B, Liu X Q, Liu Z, Zuo Y H, Xue C L, Cheng B W 2022 Chin. Phys. B 31 047302Google Scholar

    [19]

    Wang S Q, Cheng N N, Wang H A, Jia Y F, Lu Q, Ning J, Hao Y, Liu X T, Chen H F 2023 Chin. Phys. B 32 048502Google Scholar

    [20]

    Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M, Du G T 2019 Chin. Phys. B 28 048502Google Scholar

    [21]

    Ma H L, Fan D W 2009 Chin. Phys. Lett. 26 117302Google Scholar

    [22]

    Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R, Zheng Y D 2018 Chin. Phys. Lett. 35 058101Google Scholar

    [23]

    Wang P W, Song Y P, Zhang X Z, Xu J, Yu D P 2008 Chin. Phys. Lett. 25 1038Google Scholar

    [24]

    Liu Z, Tang W 2023 J. Phys. D 56 093002Google Scholar

    [25]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [26]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [27]

    Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar

    [28]

    Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W, Shen D Z 2019 Chin. Phys. B 28 048503Google Scholar

    [29]

    Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z, Tang W H 2022 Chin. Phys. B 31 024205Google Scholar

    [30]

    Xue S B, Zhuang H Z, Xue C S, Hu L J 2006 Chin. Phys. Lett. 23 3055Google Scholar

    [31]

    Xie Z L, Zhang R, Xia C T, Xiu X Q, Han P, Liu B, Zhao H, Jiang R L, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2185Google Scholar

    [32]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [33]

    Luo Z, Zhou H C 2007 IEEE Trans. Instrum. Meas. 56 1877Google Scholar

    [34]

    Galazka Z 2018 Semicond. Sci. Technol. 33 113001Google Scholar

    [35]

    Nakagomi S, Sakai T, Kikuchi K, Kokubun Y 2019 Phys. Status Solidi A 216 1700796Google Scholar

    [36]

    Stubhan T, Li N, Luechinger N A, Halim S C, Matt G J, Brabec C J 2012 Adv. Energy Mater. 2 1433Google Scholar

    [37]

    Choi H, Kim B, Ko M J, Lee D K, Kim H, Kim S H, Kim K 2012 Org. Electron. 13 959Google Scholar

    [38]

    Jing S H, Chen Y C, Ching-Fuh L 2010 IEEE Electron Device Lett. 31 332Google Scholar

    [39]

    Tao C, Ruan S P, Xie G H, Kong X Z, Shen L, Meng F X, Liu C X, Zhang X D, Dong W, Chen W Y 2009 Appl. Phys. Lett. 94 043311Google Scholar

    [40]

    Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T, Kowalsky W 2009 J. Mater. Chem. 19 702Google Scholar

    [41]

    Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 113506Google Scholar

    [42]

    Shura M W, Wagener V, Botha J R, Wagener M C 2012 Phys. B Condens. Matter 407 1656Google Scholar

    [43]

    Rose A 1955 Phys. Rev. 97 322Google Scholar

    [44]

    Gui Y H, Yang L L, Tian K, Zhang H H, Fang S M 2019 Sens. Actuators B Chem. 288 104Google Scholar

    [45]

    Lima L V C, Rodriguez M, Freitas V A A, Souza T E, Machado A E H, Patrocínio A O T, Fabris J D, Oliveira L C A, Pereira M C 2015 Appl. Catal. B 165 579Google Scholar

    [46]

    Hill J C, Choi K S 2012 J. Phys. Chem. C 116 7612Google Scholar

    [47]

    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202a2Google Scholar

    [48]

    Walter C W, Hertzler C F, Devynck P, Smith G P, Peterson J R 1991 J. Chem. Phys. 95 824Google Scholar

    [49]

    Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar

    [50]

    Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G, Liu Z, Tang W H 2022 Opt. Commun. 504 127483Google Scholar

    [51]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [52]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [53]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J Phys. Chem. Lett. 12 447Google Scholar

    [54]

    Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y, Jia R 2020 J. Alloys Compd. 821 153532Google Scholar

    [55]

    Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M, Jia R X 2020 IEEE Trans. Electron Devices 67 3199Google Scholar

    [56]

    Wu C, Qiu L L, Li S, Guo D Y, Li P G, Wang S L, Du P F, Chen Z W, Liu A P, Wang X H, Wu H P, Wu F M, Tang W H 2021 Mater. Today Phys. 17 100335Google Scholar

    [57]

    Schenk A 1992 Solid State Electron. 35 1585Google Scholar

    [58]

    Zhang M L, Ma W Y, Li S, Yang L L, Liu Z, Guo Y F, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

  • [1] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器. 物理学报, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析. 物理学报, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [4] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [5] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟. 物理学报, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [6] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响. 物理学报, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [7] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [8] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [9] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [10] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [11] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [12] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [13] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [14] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [15] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [16] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [17] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [18] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [19] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [20] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
计量
  • 文章访问数:  4812
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-06-05
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回