-
氧化镓(Ga2O3)纳米材料在紫外透明电极、高温气体传感器、日盲紫外探测器和功率器件等领域具有巨大的应用潜力, 而实现高结晶质量和尺寸形貌可控的Ga2O3纳米材料是关键. 本文通过水热法制备了不同尺寸的羟基氧化镓(GaOOH)纳米棒、纳米棒束和纺锤体, 经后期高温煅烧均成功转变为高质量单晶β-Ga2O3纳米材料并较好地保留了原始GaOOH的形态特征. 利用X射线衍射(XRD)、拉曼散射光谱(Raman)和场发射扫描电子显微镜(FE-SEM)等表征手段系统研究了前驱液的pH值大小和阴离子表面活性剂浓度对GaOOH和β-Ga2O3纳米材料晶体结构和表面形貌的影响, 并深入探讨了不同条件下GaOOH纳米材料的生长机制. 此外, 室温光致发光谱(PL)测试发现不同形貌的β-Ga2O3纳米材料均展现出典型的蓝绿色发射峰和尖锐的红光发射峰, 与纳米材料中本征缺陷的存在密切相关. 上述研究结果为未来实现高质量β-Ga2O3纳米材料的可控制备提供了有益参考.Gallium oxide (Ga2O3) nanomaterials have great potential in the fields of ultraviolet transparent electrodes, high-temperature gas sensors, solar blind ultraviolet detectors and power devices, while achieving Ga2O3 nanomaterials with high crystalline quality and controllable size and morphology still remains challenge. Herein, size-controllable Gallium oxide hydroxide (GaOOH) nanorods, nanorod bundles, and spindles were prepared by hydrothermal method. After high temperature calcination, GaOOH nanomaterials were successfully transformed into higher-quality single-crystal β-Ga2O3 nanomaterials which well retained the morphological characteristics of the pristine GaOOH.With the help of X-ray diffraction (XRD), Raman scattering spectroscopy (Raman) and field emission scanning electron microscope (FE-SEM), we systematically studied the influence of the pH value and the concentration of anionic surfactants in the precursor solution on the crystal structure and surface morphology of GaOOH and β-Ga2O3 nanomaterials, and explored the different growth mechanism of GaOOH nanomaterials under different conditions. Simultaneously, room temperature photoluminescence (PL) tests revealed that β-Ga2O3 nanomaterials with different morphologies exhibit typical broad blue-green emission and sharp red emission, which are closely related to the existence of intrinsic defects in nanomaterials.The above research results provide valuable information for the controllable preparation of high-quality β-Ga2O3 nanomaterials.
-
Keywords:
- β-Ga2O3 /
- nanomaterials /
- size regulation /
- photoluminescence
[1] Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[2] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar
[3] Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar
[4] Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar
[5] Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115
[6] Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar
[7] Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar
[8] Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar
[9] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar
Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar
[10] 马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar
Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar
[11] Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar
[12] Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar
[13] Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar
[14] Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar
[15] Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar
[16] Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar
[17] Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar
[18] Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar
[19] Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar
[20] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar
[21] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[22] Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar
[23] Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568
[24] Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar
[25] Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1
[26] Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar
[27] Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar
[28] Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar
[29] Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar
[30] Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar
[31] Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar
[32] Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar
[33] Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar
[34] Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415
[35] Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar
[36] Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar
[37] Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar
[38] Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar
[39] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[40] Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar
-
-
[1] Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[2] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar
[3] Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar
[4] Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar
[5] Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115
[6] Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar
[7] Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar
[8] Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar
[9] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar
Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar
[10] 马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar
Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar
[11] Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar
[12] Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar
[13] Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar
[14] Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar
[15] Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar
[16] Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar
[17] Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar
[18] Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar
[19] Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar
[20] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar
[21] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[22] Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar
[23] Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568
[24] Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar
[25] Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1
[26] Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar
[27] Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar
[28] Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar
[29] Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar
[30] Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar
[31] Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar
[32] Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar
[33] Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar
[34] Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415
[35] Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar
[36] Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar
[37] Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar
[38] Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar
[39] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[40] Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar
计量
- 文章访问数: 15909
- PDF下载量: 512
- 被引次数: 0