搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能

梁爱华 王旭升 李国荣 郑嘹赢 江向平 胡锐

引用本文:
Citation:

KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能

梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐

Properties of Photoluminescence and mechanoluminescence of KxNa1–xNbO3:Pr3+ ferroelectric

Liang Ai-Hua, Wang Xu-Sheng, Li Guo-Rong, Zheng Liao-Ying, Jiang Xiang-Ping, Hu Rui
PDF
HTML
导出引用
  • 应力发光材料具有应力-光转换特性, 能在机械应力下产生发光, 从而在光学信息显示方面具有很高的应用价值. 本文通过改变铁电基体KxNa1–xNbO3∶0.5%Pr3+ (KxNNOP)的K+/Na+比来调节材料的晶体结构和缺陷分布, 系统研究了K+含量对光致发光和应力发光性能的影响. 研究结果表明, K+含量的增加使晶体对称性提高, 导致KxNNOP样品的光致发光强度降低. 值得注意的是, 在450 nm的光激发下, 在K+含量较高的组分中出现了Pr3+电子3P13H53P03H5能级跃迁引起的发射峰, 这归因于Pr3+和Nb5+之间距离的变化导致Pr-O-Nb内价电子电荷转移态(IVCT)的能级位置不同. 在压缩应力下, KxNNOP (x = 0, 0.01, 0.02, 0.1) 组分展现出明亮的红色应力发光, 且应力发光强度随K+含量的增加而增大, 其中K0.1NNOP组分表现出最高的强度发射. 特别的是, 其应力发光行为具有可重复性和可恢复性的特征. 通过热释光曲线研究了KxNNOP样品中的陷阱能级, 揭示了K0.1NNOP中应力发光的增强可能与K+含量变化引起的陷阱密度和陷阱深度的差异有关. 基于这些结果, 建立了一个模型来阐述KxNNOP中可能的应力发光机理.
    Mechanoluminescent (ML) materials have mechanical-light conversion properties and can generate luminescence under mechanical stress, which makes the ML materials have high application value in optical information display. In this work, the crystal structure and defect distribution are adjusted by changing the K+/Na+ ratio of the ferroelectric matrix KxNa1–xNbO3∶0.5%Pr3+ (KxNNOP), and the effects of K+ content on the photoluminescence (PL) and ML properties are systematically investigated. The research results indicate that as the K+ content increases, the symmetry of the crystal is enhanced, leading the PL intensity of the KxNNOP samples to decrease. It is worth noting that the emission peaks caused by the 3P13H5 and 3P03H5 transition at the Pr3+ electron level appear in the PL spectra of the components with higher K+ content under the light excitation of 450 nm, which is attributed to the different energy level positions of the internal valence electron charge transfer states within Pr-O-Nb, caused by the change in the distance between Pr3+ and Nb5+. Under the compressive stress, the KxNNOP (x = 0, 0.01, 0.02, 0.1) components exhibit the bright red ML, and the ML intensity increases with the K+ content increasing. The K0.1NNOP component exhibits the highest ML intensity emission. In particular, the ML behavior has the characteristics of repeatability and recoverability. The trap energy levels in the KxNNOP samples are investigated by thermoluminescence curves, revealing that the enhancement of ML in K0.1NNOP may be related to the differences in trap density and trap depth, caused by changes in K+ content. Based on these results, a model is established to elucidate the possible ML mechanism in KxNNOP.
      通信作者: 郑嘹赢, zhengly@mail.sic.ac.cn ; 江向平, jiangxp64@163.com
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716502, 2021YFB3800604)和国家自然科学基金(批准号: 51831010)资助的课题.
      Corresponding author: Zheng Liao-Ying, zhengly@mail.sic.ac.cn ; Jiang Xiang-Ping, jiangxp64@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA0716502, 2021YFB3800604) and the National Natural Science Foundation of China (Grant No. 51831010).
    [1]

    Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang Z L 2015 Adv. Mater. 27 2324Google Scholar

    [2]

    Jeong S M, Song S, Lee S K, Choi B 2013 Appl. Phys. Lett. 102 051110Google Scholar

    [3]

    Terasaki N, Yamada H, Xu C N 2013 Catal. Today. 201 203Google Scholar

    [4]

    Jeong S M, Song S, Lee S. K, Ha NY 2013 Adv. Mater. 25 6194Google Scholar

    [5]

    Jeong S M, Song S, Joo K I, Kim J, Hwang S H, Jeong J, Kim H 2014 Energy Environ. Sci. 7 3338Google Scholar

    [6]

    Peng D, Chen B, Wang F J 2015 ChemPlusChem. 80 1209Google Scholar

    [7]

    Chen B, Zhang X, Wang F J 2021 Acc. Mater. Res. 2 364Google Scholar

    [8]

    Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 2414Google Scholar

    [9]

    Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 1236Google Scholar

    [10]

    Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Wang Z L 2015 Advanced Materials 27 2324

    [11]

    Chandra V, Chandra B, Jha P J 2013 Appl. Phys. Lett. 102 241105Google Scholar

    [12]

    Wang X, Yamada H, Xu C N. 2005 Appl. Phys. Lett. 86 022905Google Scholar

    [13]

    Zhang J C, Pan C, Zhu Y F, Zhao L Z, He H W, Liu X, Qiu J 2018 Adv. Mater. 30 1804644Google Scholar

    [14]

    Wei Y, Wu Z, Jia Y, Wu J, Shen Y, Luo H 2014 Appl. Phys. Lett. 105 042902Google Scholar

    [15]

    Egerton L, Dillon D M 1959 J. Am. Ceram. 42 438Google Scholar

    [16]

    Shirane G, Newnham R, Pepinsky R 1954 Phys. Rev. 96 581Google Scholar

    [17]

    Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W J 2006 Mater. Sci. Eng. , B 131 83Google Scholar

    [18]

    Fan X H, Zhang J C, Zhang M, Pan C, Yan X, Han W P, Zhang H D, Long Y Z, Wang X J 2017 Opt. Express 25 14238Google Scholar

    [19]

    Zhang J C, Fan X H, Yan X, Xia F, Kong W, Long Y Z, Wang X J 2018 Acta Mater. 152 148

    [20]

    Feng A, Smet P F 2018 Materials 11 484Google Scholar

    [21]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976Google Scholar

    [22]

    Tennery V J, Hang K W 1968 J. Appl. Phy. 39 4749Google Scholar

    [23]

    Wells M, Megaw H D 1961 Proc. Phys. Soc. 78 1258Google Scholar

    [24]

    Zhang Q, Luo L, Gong J, Du P, Li W P, Yuan G L 2020 J. Eur. 40 3946

    [25]

    Wang J, Luo L J 2018 J. Am. Ceram. Soc. 101 400Google Scholar

    [26]

    Kakimoto K I, Sumi T, Kagomiya I 2010 Jpn J. Appl. Phys. 49 09MD10Google Scholar

    [27]

    Chen T, Liang R, Li Y, Zhou Z, Dong X J 2017 J. Am. Ceram. Soc. 100 1065Google Scholar

    [28]

    Pinel E, Boutinaud P, Mahiou R J 2004 J. Alloys Compd. 380 225Google Scholar

    [29]

    Dorenbos P 2017 Opt. Mater. 69 8Google Scholar

    [30]

    Barandiarán Z, Meijerink A, Seijo L J 2015 Phys. Chem. Chem. Phys. 17 19874Google Scholar

    [31]

    Sun H, Zhang Q, Wang X, Bulin C 2015 J. Am. Ceram. Soc. 98 601Google Scholar

    [32]

    Zhang Q, Sun H, Zhang Y 2014 Jo. Am. Ceram. Soc. 97 868Google Scholar

    [33]

    Newman D J, Ng B 2000 Crystal Field Handbook (Cambridge: Cambridge University Press)

    [34]

    Diallo P, Boutinaud P, Mahiou R, Cousseins J 1997 Phys. Status Solidi A 160 255Google Scholar

    [35]

    Li K, Xue D 2006 J. Phys. Chem. A 110 11332Google Scholar

    [36]

    Lecointre A, Bessière A, Bos A, Dorenbos P, Viana B, Jacquart S 2011 J. Phys. Chem. C 115 4217Google Scholar

    [37]

    Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D 2011 J. Am. Chem. Soc. 133 11810Google Scholar

    [38]

    Van den eeckhout K, Bos A J, Poelman D, Smet P F 2013 Phys. Rev. B 87 045126Google Scholar

    [39]

    Shalgaonkar C, Narlikar A 1972 J. Mater. Sci. 7 1465Google Scholar

    [40]

    Sakai R, Katsumata T, Komuro S, Morikawa T 1999 J. Lumin. 85 149Google Scholar

    [41]

    Kang F, Yang X, Peng M, Wondraczek L, Ma Z, Zhang Q, Qiu J 2014 J. Phys. Chem. C 118 7515Google Scholar

    [42]

    Kang F, Zhang H, Wondraczek L, Yang X, Zhang Y, Lei D Y, Peng M 2016 Chem. Mater. 28 2692

    [43]

    Gao Y, Huang F, Lin H, Zhou J, Xu J, Wang Y 2016 Adv. Funct. Mater. 26 3139Google Scholar

    [44]

    Akiyama M, Xu C N, Matsui H, Nonaka K, Watanabe T 1999 Appl. Phys. Lett. 75 2548Google Scholar

    [45]

    Matsui H, Xu C N, Akiyama M, Watanabe T 2000 Jpn. J. Appl. Phys. 39 6582Google Scholar

    [46]

    Zhang H, Yamada H, Terasaki N, Xu C N 2007 Appl. Phys. Lett. 91 081905Google Scholar

    [47]

    Fu X, Zheng S, Shi J, Zhang H J 2017 J. Lumin. 192 117Google Scholar

    [48]

    Shigemi A, Wada T 2004 Jpn. J. Appl. Phys. 43 6793Google Scholar

    [49]

    Wu X, Lin J, Xu Z, Zhao C, Lin C, Wang H, Zhai J 2021 Laser Photonics Rev. 15 2100211Google Scholar

    [50]

    Boutinaud P, Sarakha L, Mahiou R 2008 Phys. Condens. Matter 21 025901Google Scholar

    [51]

    Xie T, Guo H, Zhang J, He Y, Lin H, Chen G, Zheng Z 2016 J Lumine. 170 150Google Scholar

    [52]

    Zhang J C, Long Y Z, Yan X, Wang X, Wang F 2016 Chem. Mater. 28 4052Google Scholar

    [53]

    Chandra B P, Chandra V K, Jha P 2015 Phys. B: Condens. Matter 461 38Google Scholar

  • 图 1  KxNa1–xNbO3∶Pr3+粉末与环氧树脂复合的圆柱体示意图

    Fig. 1.  Schematic diagram of a cylinder composited with KxNa1–xNbO3∶Pr3+ powder and epoxy resin.

    图 2  (a) KxNNOP 样品的 XRD图谱; (b) 2θ在44º—48º范围内的放大图; (c) NNOP, (d) K0.5NNOP 样品的 Rietveld结构精修图; (e) 晶格常数随x的变化

    Fig. 2.  (a) XRD patterns of KxNNOP samples; (b) magnified view of 2θ in the range 44º–48º; rietveld structural refinement plot of (c) NNOP, (d) K0.5NNOP sample; (e) change of lattice constants with x.

    图 3  KxNNOP陶瓷样品的拉曼光谱

    Fig. 3.  Raman spectra of KxNNOP ceramics sample.

    图 4  (a) KxNNOP样品的PLE (λem = 612 nm)光谱, 插图是310—410 nm范围内放大归一化的 PLE光谱; (b) KxNNOP样品的PL (λex = 335 nm)光谱, 插图为1D23H4发射峰的相对强度与K+含量x的关系; (c) PL (λex = 450 nm) 光谱; (d) KxNNOP样品中的IVCT能级高度与$ {\mathrm{\chi }}_{\mathrm{o}\mathrm{p}\mathrm{t}}\left({\mathrm{N}\mathrm{b}}^{5+}\right) $/$d({\mathrm{P}\mathrm{r}}^{3+}\text{-}{\mathrm{N}\mathrm{b}}^{5+})$变化关系; (e) 能级位置坐标图, 其中ΔE 是从3P0能级和 IVCT 能级的交叉处到3P0 能级底部之间的距离

    Fig. 4.  (a) PLE (λem = 612 nm) spectra of KxNNOP samples, the inset is the magnified normalized PLE spectrum in the 310-410 nm range; (b) PL (λex = 335 nm) spectra of KxNNOP samples, the inset is the relationship between the relative intensity of the 1D23H4 emission peak and the K+ content x; (c) PL (λex = 450 nm) spectra; (d) relationship between IVCT energy in KxNNOP samples and $ {\mathrm{\chi }}_{\mathrm{o}\mathrm{p}\mathrm{t}}\left({\mathrm{N}\mathrm{b}}^{5+}\right) $/$d({\mathrm{P}\mathrm{r}}^{3+}\text{-}{\mathrm{N}\mathrm{b}}^{5+})$; (e) configurational coordinate diagram, ΔE is the distance from the intersection of the 3P0 energy level and the IVCT energy level to the bottom of the 3P0 energy level.

    图 5  (a) K0.1NNOP 样品的ML, AG和PL光谱, 插图为相应样品的发光图像; (b) KxNNOP (x = 0, 0.01, 0.02, 0.1)复合圆柱体在压缩载荷下的ML响应; (c) K0.1NNOP复合圆柱体在连续负载下的ML强度衰减曲线; (d) 紫外光照射后ML的可恢复性; (e) K0.1NNOP样品重复测试4次的ML曲线

    Fig. 5.  (a) ML, AG and PL spectra of K0.1NNOP sample, insets are images of various luminescence for corresponding samples; (b) ML responses under compressive load of KxNNOP (x = 0, 0.01, 0.02, 0.1) composite cylinders; (c) ML intensity decay curve under consecutive load of K0.1NNOP composite cylinder; (d) recoverability of ML after UV light irradiation; (e) ML curve of K0.1NNOP sample repeated 4 times.

    图 6  (a) KxNNOP样品的AG (λIR = 365 nm)光谱; (b) KxNNOP样品的AG衰减曲线; (c) KxNNOP样品的TL曲线; (d) TL曲线的高斯拟合结果

    Fig. 6.  (a) AG (λIR = 365 nm) spectra of KxNNOP samples; (b) AG decay curves of KxNNOP samples; (c) TL curves of KxNNOP samples; (d) Gaussian fitting results of KxNNOP samples.

    图 7  (a) K0.1NNOP样品的XPS光谱; (b) NNOP和K0.1NNOP样品O 1s 的XPS光谱

    Fig. 7.  (a) XPS spectrum of K0.1NNOP powder sample; (b) XPS spectrum for O 1s of NNOP and K0.1NNOP powders samples.

    图 8  (a) K0.1NNOP陶瓷的PFM 振幅蝶形环; (b) KxNNOP中ML机理的示意图 (CB: 导带, VB: 价带)

    Fig. 8.  (a) PFM amplitude butterfly loops of K0.1NNOP ceramic; (b) chematic representation of the ML mechanism in KxNNOP (CB: conduction band, VB: valence band).

    表 1  KxNa1–xNbO3∶Pr3+ (x = 0, 0.01, 0.02, 0.1, 0.3, 0.5)样品Rietveld结构精修参数

    Table 1.  Rietveld structural refinement parameters of KxNa1–xNbO3∶Pr3+ (x = 0, 0.01, 0.02, 0.1, 0.3, 0.5) samples

    Samplesx = 0x = 0.01x = 0.02x = 0.1x = 0.3x = 0.5
    Space
    group
    P21maAmm2Amm2Amm2Amm2Amm2
    a5.56903.95173.90163.91873.93543.9639
    b7.79005.60275.54465.61865.60205.6570
    c5.51805.65895.58935.56785.63165.6886
    V3239.39125.29120.91122.59124.16127.56
    Rp/%0.080.240.280.210.240.15
    Rwp/%0.060.160.200.170.170.11
    下载: 导出CSV

    表 2  KxNNOP样品计算得到的IVCT能级高度

    Table 2.  Calculated IVCT energy heights in KxNNOP samples.

    Compositionχopt (Nb5+) d (Pr3+-Nb5+)/ÅEIVCT/cm–1
    x = 01.8623.1829640
    x = 0.021.8623.3230870
    x = 0.11.8623.3130786
    x = 0.31.8623.3431037
    x = 0.51.8623.3731284
    下载: 导出CSV
  • [1]

    Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang Z L 2015 Adv. Mater. 27 2324Google Scholar

    [2]

    Jeong S M, Song S, Lee S K, Choi B 2013 Appl. Phys. Lett. 102 051110Google Scholar

    [3]

    Terasaki N, Yamada H, Xu C N 2013 Catal. Today. 201 203Google Scholar

    [4]

    Jeong S M, Song S, Lee S. K, Ha NY 2013 Adv. Mater. 25 6194Google Scholar

    [5]

    Jeong S M, Song S, Joo K I, Kim J, Hwang S H, Jeong J, Kim H 2014 Energy Environ. Sci. 7 3338Google Scholar

    [6]

    Peng D, Chen B, Wang F J 2015 ChemPlusChem. 80 1209Google Scholar

    [7]

    Chen B, Zhang X, Wang F J 2021 Acc. Mater. Res. 2 364Google Scholar

    [8]

    Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 2414Google Scholar

    [9]

    Xu C N, Watanabe T, Akiyama M, Zheng XG 1999 Appl. Phys. Lett. 74 1236Google Scholar

    [10]

    Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Wang Z L 2015 Advanced Materials 27 2324

    [11]

    Chandra V, Chandra B, Jha P J 2013 Appl. Phys. Lett. 102 241105Google Scholar

    [12]

    Wang X, Yamada H, Xu C N. 2005 Appl. Phys. Lett. 86 022905Google Scholar

    [13]

    Zhang J C, Pan C, Zhu Y F, Zhao L Z, He H W, Liu X, Qiu J 2018 Adv. Mater. 30 1804644Google Scholar

    [14]

    Wei Y, Wu Z, Jia Y, Wu J, Shen Y, Luo H 2014 Appl. Phys. Lett. 105 042902Google Scholar

    [15]

    Egerton L, Dillon D M 1959 J. Am. Ceram. 42 438Google Scholar

    [16]

    Shirane G, Newnham R, Pepinsky R 1954 Phys. Rev. 96 581Google Scholar

    [17]

    Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W J 2006 Mater. Sci. Eng. , B 131 83Google Scholar

    [18]

    Fan X H, Zhang J C, Zhang M, Pan C, Yan X, Han W P, Zhang H D, Long Y Z, Wang X J 2017 Opt. Express 25 14238Google Scholar

    [19]

    Zhang J C, Fan X H, Yan X, Xia F, Kong W, Long Y Z, Wang X J 2018 Acta Mater. 152 148

    [20]

    Feng A, Smet P F 2018 Materials 11 484Google Scholar

    [21]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976Google Scholar

    [22]

    Tennery V J, Hang K W 1968 J. Appl. Phy. 39 4749Google Scholar

    [23]

    Wells M, Megaw H D 1961 Proc. Phys. Soc. 78 1258Google Scholar

    [24]

    Zhang Q, Luo L, Gong J, Du P, Li W P, Yuan G L 2020 J. Eur. 40 3946

    [25]

    Wang J, Luo L J 2018 J. Am. Ceram. Soc. 101 400Google Scholar

    [26]

    Kakimoto K I, Sumi T, Kagomiya I 2010 Jpn J. Appl. Phys. 49 09MD10Google Scholar

    [27]

    Chen T, Liang R, Li Y, Zhou Z, Dong X J 2017 J. Am. Ceram. Soc. 100 1065Google Scholar

    [28]

    Pinel E, Boutinaud P, Mahiou R J 2004 J. Alloys Compd. 380 225Google Scholar

    [29]

    Dorenbos P 2017 Opt. Mater. 69 8Google Scholar

    [30]

    Barandiarán Z, Meijerink A, Seijo L J 2015 Phys. Chem. Chem. Phys. 17 19874Google Scholar

    [31]

    Sun H, Zhang Q, Wang X, Bulin C 2015 J. Am. Ceram. Soc. 98 601Google Scholar

    [32]

    Zhang Q, Sun H, Zhang Y 2014 Jo. Am. Ceram. Soc. 97 868Google Scholar

    [33]

    Newman D J, Ng B 2000 Crystal Field Handbook (Cambridge: Cambridge University Press)

    [34]

    Diallo P, Boutinaud P, Mahiou R, Cousseins J 1997 Phys. Status Solidi A 160 255Google Scholar

    [35]

    Li K, Xue D 2006 J. Phys. Chem. A 110 11332Google Scholar

    [36]

    Lecointre A, Bessière A, Bos A, Dorenbos P, Viana B, Jacquart S 2011 J. Phys. Chem. C 115 4217Google Scholar

    [37]

    Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D 2011 J. Am. Chem. Soc. 133 11810Google Scholar

    [38]

    Van den eeckhout K, Bos A J, Poelman D, Smet P F 2013 Phys. Rev. B 87 045126Google Scholar

    [39]

    Shalgaonkar C, Narlikar A 1972 J. Mater. Sci. 7 1465Google Scholar

    [40]

    Sakai R, Katsumata T, Komuro S, Morikawa T 1999 J. Lumin. 85 149Google Scholar

    [41]

    Kang F, Yang X, Peng M, Wondraczek L, Ma Z, Zhang Q, Qiu J 2014 J. Phys. Chem. C 118 7515Google Scholar

    [42]

    Kang F, Zhang H, Wondraczek L, Yang X, Zhang Y, Lei D Y, Peng M 2016 Chem. Mater. 28 2692

    [43]

    Gao Y, Huang F, Lin H, Zhou J, Xu J, Wang Y 2016 Adv. Funct. Mater. 26 3139Google Scholar

    [44]

    Akiyama M, Xu C N, Matsui H, Nonaka K, Watanabe T 1999 Appl. Phys. Lett. 75 2548Google Scholar

    [45]

    Matsui H, Xu C N, Akiyama M, Watanabe T 2000 Jpn. J. Appl. Phys. 39 6582Google Scholar

    [46]

    Zhang H, Yamada H, Terasaki N, Xu C N 2007 Appl. Phys. Lett. 91 081905Google Scholar

    [47]

    Fu X, Zheng S, Shi J, Zhang H J 2017 J. Lumin. 192 117Google Scholar

    [48]

    Shigemi A, Wada T 2004 Jpn. J. Appl. Phys. 43 6793Google Scholar

    [49]

    Wu X, Lin J, Xu Z, Zhao C, Lin C, Wang H, Zhai J 2021 Laser Photonics Rev. 15 2100211Google Scholar

    [50]

    Boutinaud P, Sarakha L, Mahiou R 2008 Phys. Condens. Matter 21 025901Google Scholar

    [51]

    Xie T, Guo H, Zhang J, He Y, Lin H, Chen G, Zheng Z 2016 J Lumine. 170 150Google Scholar

    [52]

    Zhang J C, Long Y Z, Yan X, Wang X, Wang F 2016 Chem. Mater. 28 4052Google Scholar

    [53]

    Chandra B P, Chandra V K, Jha P 2015 Phys. B: Condens. Matter 461 38Google Scholar

  • [1] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [2] 包定华. 稀土发光铁电薄膜的研究进展. 物理学报, 2020, 69(12): 127712. doi: 10.7498/aps.69.20200738
    [3] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [4] 李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新. 用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷. 物理学报, 2020, 69(17): 174208. doi: 10.7498/aps.69.20200482
    [5] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵. Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响. 物理学报, 2014, 63(14): 147701. doi: 10.7498/aps.63.147701
    [8] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究. 物理学报, 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [9] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [10] 刘红利, 郝玉英, 许并社. 白光发光二级管用红色荧光粉LiSrBO3: Eu3+的制备与发光性能研究. 物理学报, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [11] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [12] 高杨, 吕强, 汪洋, 刘占波. 掺杂浓度和烧结温度对CaWO4:Eu3+发光性能的影响. 物理学报, 2012, 61(7): 077802. doi: 10.7498/aps.61.077802
    [13] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [14] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [15] 方庆清, 王伟娜, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. Zn1-xMgxO薄膜的光致发光特性研究. 物理学报, 2009, 58(8): 5836-5841. doi: 10.7498/aps.58.5836
    [16] 罗建乔, 孙敦陆, 张庆礼, 刘文鹏, 谷长江, 吴路生, 殷绍唐. Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光. 物理学报, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [17] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [18] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [19] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [20] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光. 物理学报, 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
计量
  • 文章访问数:  4475
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-04-16
  • 上网日期:  2022-08-11
  • 刊出日期:  2022-08-20

/

返回文章
返回