搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土发光铁电薄膜的研究进展

包定华

引用本文:
Citation:

稀土发光铁电薄膜的研究进展

包定华

Research progress in rare earth doping photoluminescent ferroelectric thin films

Bao Ding-Hua
PDF
HTML
导出引用
  • 稀土掺杂是提高光电功能材料性能的重要途径. 把稀土掺杂铁电材料与稀土发光相结合, 还可拓展出铁电材料的新性能, 比如, 选择合适的稀土元素掺入钛酸铋铁电材料, 可使之在保持较好的铁电性能的同时, 又显示良好的发光性能. 近年来, 这类在氧化物铁电材料中由于稀土离子掺杂产生光致发光特性的研究引起了人们的关注, 有望研制集成发光铁电器件. 本文简要介绍了稀土发光铁电材料的研究状况, 重点介绍我们在稀土发光铁电薄膜方向的研究进展. 我们的研究表明, 稀土掺杂钛酸铋铁电薄膜同时具有较好的发光特性和铁电特性, 这与其独特的成分构成和层状钙钛矿结构密切相关; Eu3+离子荧光结构探针可以为进一步研究Eu3+掺杂铁电薄膜材料的结构与性能关系提供新思路; 在某些铁电薄膜(如Pr离子掺杂的x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3薄膜等)中掺入稀土离子后, 稀土离子的发光可用于检测铁电薄膜中是否存在准同型相界; 将ZnO纳米材料和金、银纳米颗粒与掺铕钛酸铋薄膜复合, 可显著增强稀土发光.
    Rare earth doping is an important method to improve the properties of optoelectronic functional materials. Combining rare earth doping ferroelectric materials and rare earth photoluminescence can create new functional properties of ferroelectric materials. For example, choosing and using an appropriate rare earth element to be doped into a bismuth titanate ferroelectric material, the bismuth titanate will exhibit good photoluminescent properties as well as ferroelectric properties. Recently, photoluminescence properties originating from rare earth ions in oxide ferroelectric materials have attracted much attention for possible integrated photoluminescent ferroelectric device applications. In this paper, we briefly review the research status and progress of photoluminescence in rare earth photoluminescent ferroelectric materials, and we place the emphasis on our own research work in photoluminescent ferroelectric thin films such as (Bi,Eu)4Ti3O12, (Bi,Er)4Ti3O12, and codoped bismuth titanate thin films, and nanocomposite (Bi,Eu)4Ti3O12 ferroelectric thin films. Our results show that the rare earth doped bismuth titanate ferroelectric thin films exhibit good photoluminescent and ferroelectric properties due to unique compositions and layered perovskite structure, that the Eu3+ fluorescent structure probe can provide a new path for further studying the relationship between structure and property of Eu-doped ferroelectric thin films, that the rare earth photoluminescence can be used to examine the existence of morphotropic phase boundary in certain ferroelectric thin films such as Pr-doped x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3 thin films, and nanocomposite materials of ZnO nanomaterials, and that Au nanoparticles, Ag nanoparticles with Eu-doped bismuth titanate exhibit obviously enhanced photoluminescent properties.
      通信作者: 包定华, stsbdh@mail.sysu.edu.cn
      Corresponding author: Bao Ding-Hua, stsbdh@mail.sysu.edu.cn
    [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar

    [3]

    Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar

    [4]

    Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar

    [5]

    Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar

    [6]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar

    [7]

    Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar

    [8]

    Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar

    [9]

    Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar

    [10]

    Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar

    [11]

    Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar

    [12]

    Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar

    [13]

    Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar

    [14]

    Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar

    [15]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [16]

    Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar

    [17]

    de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar

    [18]

    Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar

    [19]

    Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar

    [20]

    Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar

    [21]

    Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar

    [22]

    Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar

    [23]

    Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar

    [24]

    Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar

    [25]

    Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar

    [26]

    Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar

    [27]

    Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar

    [28]

    Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar

    [29]

    Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar

    [30]

    Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar

    [31]

    Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar

    [32]

    Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar

    [33]

    Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar

    [34]

    Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar

    [35]

    吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar

    Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar

    [36]

    Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar

    [37]

    Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar

    [38]

    Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar

    [39]

    Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar

    [40]

    Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar

    [41]

    Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar

    [42]

    Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar

    [43]

    Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar

    [44]

    Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar

  • 图 1  不同退火温度下BEuT (x = 0.85)薄膜的光学透射率[24]

    Fig. 1.  Optic transmittance of BEuT (x = 0.85) thin films annealed at different temperatures[24].

    图 2  不同退火温度下BEuT (x = 0.85)薄膜的激发谱和发射谱[24]

    Fig. 2.  Excitation and emission spectra of BEuT (x = 0.85) thin films annealed at different temperatures[24].

    图 3  不同Eu掺杂浓度的BEuT薄膜的光致发光谱[24]

    Fig. 3.  Photoluminescence spectra of BEuT thin films with different Eu3+ concentrations[24].

    图 4  BEGT和BEuT薄膜的发射谱[26]

    Fig. 4.  Emission spectra of BEGT and BEuT thin films under exciting wavelength of 350 nm[26].

    图 5  Ho/Yb共掺钛酸铋薄膜的上转换发光光谱[31]

    Fig. 5.  Up-conversion emission spectra of Bi3.98-xHo0.02YbxTi3O12 thin films on fused silica substrates[31]. The inset shows a photograph of the bright up-conversion green emission of Bi3.78Ho0.02Yb0.2Ti3O12 thin films excited by 980 nm diode laser.

    图 6  Ho/Yb共掺钛酸铋薄膜的发光能级机理分析[31]

    Fig. 6.  Simplified energy level diagram for up-conversion emission of Ho/Yb-codoped bismuth titanate thin films[31].

    图 7  Bi3.79Tm0.01Yb0.2Ti2.99W0.01O12薄膜的电滞回线[32]

    Fig. 7.  P-E hysteresis loop of Bi3.79Tm0.01Yb0.2Ti2.99W0.01O12 thin films[32].

    图 8  Pr掺杂x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3薄膜的(a)发射光谱和(b)发光强度随Pr掺杂量的变化[33]

    Fig. 8.  (a) Emission spectra excited at 350 nm UV radiation, and (b) 611 nm red emission intensity as a function of KBT content for Pr3+-doped x(K1/2Bi1/2)TiO3-(1-x) (Na1/2Bi1/2)TiO3 thin films[33]. The inset of (b) shows a photoluminescence photograph of the thin film (x = 0.15).

    图 9  (a) BEuT/ZnO纳米复合薄膜和(b) BEuT薄膜的发射谱[40].

    Fig. 9.  Emission spectra of (a) nanocomposite film composed of BEuT matrix and highly c-axis oriented ZnO nanorods and (b) BEuT thin film[40].

  • [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar

    [3]

    Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar

    [4]

    Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar

    [5]

    Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar

    [6]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar

    [7]

    Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar

    [8]

    Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar

    [9]

    Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar

    [10]

    Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar

    [11]

    Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar

    [12]

    Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar

    [13]

    Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar

    [14]

    Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar

    [15]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [16]

    Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar

    [17]

    de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar

    [18]

    Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar

    [19]

    Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar

    [20]

    Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar

    [21]

    Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar

    [22]

    Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar

    [23]

    Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar

    [24]

    Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar

    [25]

    Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar

    [26]

    Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar

    [27]

    Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar

    [28]

    Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar

    [29]

    Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar

    [30]

    Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar

    [31]

    Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar

    [32]

    Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar

    [33]

    Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar

    [34]

    Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar

    [35]

    吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar

    Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar

    [36]

    Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar

    [37]

    Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar

    [38]

    Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar

    [39]

    Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar

    [40]

    Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar

    [41]

    Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar

    [42]

    Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar

    [43]

    Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar

    [44]

    Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar

  • [1] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [2] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [3] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [4] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [5] 吕业刚, 梁晓琳, 谭永宏, 郑学军, 龚跃球, 何林. 微结构对Eu掺杂Bi4Ti3O12铁电薄膜铁电性能的影响. 物理学报, 2011, 60(2): 027701. doi: 10.7498/aps.60.027701
    [6] 任艳东, 吕树臣. 发光二极管用SrWO4:Eu3+红光荧光粉激发谱强度的调控. 物理学报, 2011, 60(8): 087804. doi: 10.7498/aps.60.087804
    [7] 杨昌虎, 马忠权, 徐飞, 赵磊, 李凤, 何波. 稀土钇、镧掺杂TiO2薄膜的拉曼谱分析. 物理学报, 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [8] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [9] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [10] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [11] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [12] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [13] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [14] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [15] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响. 物理学报, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [16] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [17] 宋淑芳, 周生强, 陈维德, 朱建军, 陈长勇, 许振嘉. 掺铒GaN薄膜的背散射/沟道分析和光致发光研究. 物理学报, 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [18] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] 彭爱华, 谢二庆, 姜 宁, 张志敏, 李 鹏, 贺德衍. 稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究. 物理学报, 2003, 52(7): 1792-1796. doi: 10.7498/aps.52.1792
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  10614
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-17
  • 修回日期:  2020-06-05
  • 刊出日期:  2020-06-20

/

返回文章
返回