搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响

周小红 杨卿 邹军涛 梁淑华

引用本文:
Citation:

生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响

周小红, 杨卿, 邹军涛, 梁淑华

Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films

Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua
PDF
导出引用
  • 利用热氧化法在不同参数条件下生长了Ga掺杂范围较宽的ZnO薄膜, 研究了ZnO薄膜的表面微观结构和光致发光性能. 研究表明: Ga以Ga3+存在并掺入ZnO晶格取代Zn2+, Ga的掺入改变了ZnO薄膜中的缺陷类型及浓度、化学计量比、薄膜表面结晶质量, 进而影响了薄膜的光致发光性能. 随着热氧化温度升高, Ga掺杂量增大, ZnO薄膜的晶粒尺寸增大, 尺寸更均一, 紫外光与可见光强度比增大. 随着热氧化时间延长, Ga掺杂量降低, ZnO薄膜的晶粒尺寸均一性变差, 紫外光与可见光强度比减小.
    ZnO has a wide direct band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature, which is recognized as one of the promising semiconductors for optoelectronic device applications. However, ZnO generally displays visible defect-related deep-level emission and/or UV near-band-edge emission, which is strongly dependent on the growth method and condition. It has been reported that doping with IIIA elements can improve the optical properties of ZnO. Among them, Ga doping is considered not to induce large lattice distortion of ZnO due to the fact that the bonding lengths of Ga-O and Zn-O are similar and ionic radii of Ga3+ and Zn2+ are also similar. The gallium related compounds such as triethylgallium, gallium nitrate and gallium oxide are used as the Ga doping sources. It has been proved that ZnO film can be grown directly by the thermal oxidation of ZnS substrate. In this research, the Ga doping is adopted in the growth of ZnO film by applying the molten gallium to the surface of ZnS substrate and performing the subsequent thermal oxidation in the air at 650 and 700 °C for 3 and 8 h, respectively. The effects of growth condition on the microstructures and photoluminescence properties of the Ga-doped ZnO film are investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence at room temperature. In addition, the relationship among the oxidation temperature, oxidation time, Ga doping content and photoluminescence properties is discussed. The results show that the Ga-doped ZnO films grown under different growth conditions exhibit various amounts of Ga content and the gallium is present in the ZnO matrix as Ga3+ by partially substituting Zn2+. The Ga doping affects the microstructure and photoluminescence property by changing the defect type and level, stoichiometric ratio, and crystal quality of ZnO film. As the oxidation temperature increases, the amount of Ga doping content increases. In addition, the grain size of the Ga-doped ZnO film increases and becomes uniform, and the ratio of ultraviolet emission intensity to visible emission intensity increases. However, as the oxidation time increases, the amount of Ga doping content decreases, the grain size of the Ga-doped ZnO film becomes non-uniform, and the ratio of ultraviolet emission intensity to visible emission intensity decreases.
    • 基金项目: 国家自然科学基金(批准号: 51202191)、陕西省自然科学基础研究计划(批准号: 2012JQ6002)和陕西省教育厅科研计划(批准号: 12JK0427)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51202191), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ6002), and the Scientific Research Program Funded by Shaanxi Provincial Education Department of China (Grant No. 12JK0427).
    [1]

    Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116

    [2]

    Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083

    [3]

    Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502

    [4]

    Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19

    [5]

    Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498

    [6]

    El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071

    [7]

    Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969

    [8]

    Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186

    [9]

    Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272

    [10]

    Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447

    [11]

    Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403

    [12]

    Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35

    [13]

    Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019

    [14]

    Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382

    [15]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 物理学报 61 167105]

    [16]

    Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928

    [17]

    Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463

    [18]

    Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552

    [19]

    Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291

    [20]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [21]

    Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101

    [22]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477

    [23]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 物理学报 62 157101]

    [24]

    Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [25]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713

    [26]

    Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]

    [27]

    Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]

    [28]

    Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301

    [29]

    Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804

    [30]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [31]

    Hirschwald W H 1985 Acc Chem. Res. 18 228

    [32]

    Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]

    [33]

    Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]

    [34]

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286

  • [1]

    Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116

    [2]

    Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083

    [3]

    Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502

    [4]

    Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19

    [5]

    Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498

    [6]

    El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071

    [7]

    Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969

    [8]

    Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186

    [9]

    Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272

    [10]

    Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447

    [11]

    Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403

    [12]

    Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35

    [13]

    Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019

    [14]

    Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382

    [15]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 物理学报 61 167105]

    [16]

    Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928

    [17]

    Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463

    [18]

    Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552

    [19]

    Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291

    [20]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [21]

    Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101

    [22]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477

    [23]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 物理学报 62 157101]

    [24]

    Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [25]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713

    [26]

    Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]

    [27]

    Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]

    [28]

    Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301

    [29]

    Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804

    [30]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [31]

    Hirschwald W H 1985 Acc Chem. Res. 18 228

    [32]

    Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]

    [33]

    Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]

    [34]

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286

  • [1] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [2] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [3] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [4] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  5306
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-26
  • 修回日期:  2014-11-26
  • 刊出日期:  2015-04-05

/

返回文章
返回