搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

杨昌虎 马忠权 徐飞 赵磊 李凤 何波

引用本文:
Citation:

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

杨昌虎, 马忠权, 徐飞, 赵磊, 李凤, 何波

Raman spectral analysis of TiO2 thin films doped with rare-earth yttrium and lanthanum

Yang Chang-Hu, Ma Zhong-Quan, Xu Fei, Zhao Lei, Li Feng, He Bo
PDF
导出引用
  • 采用溶胶-凝胶法在石英玻璃衬底上用旋涂法制备了未掺杂、掺杂钇和掺杂镧的TiO2薄膜样品,对样品在700—1100 ℃范围内进行退火处理,并对样品的拉曼光谱进行了分析.分析表明:随着退火温度的升高,未掺杂TiO2薄膜发生了从锐钛矿相经混相最终向金红石相的转换,掺杂钇和掺杂镧对TiO2薄膜的晶相转换起阻碍作用,掺杂镧的阻碍作用更强;稀土掺杂能使TiO2薄膜晶粒细化,并使晶粒内部应力增大从而阻碍晶格振动,掺杂镧比掺杂钇的效果
    TiO2 thin films doped with rare-earth yttrium and lanthanum were prepared on quartz plate by sol-gel/spin-coating technique. The samples were annealed at 700 to 1100 ℃ and the Raman spectra of the samples were obtained. Analysis of Raman spectra shows that with increasing annealing temperature, the anatase form of undoped TiO2 thin film transforms eventually into the rutile phase with mixed anatase/ rutil phase as an intermediate. Yttrium doping and lanthanum doping of TiO2 thin films can inhibit the phase transformation, and the latter effect is stronger. Rare-earth doping refines grain size of TiO2 thin films and increases the internal stress, thereby preventing lattice vibration. The effect of La doping is stronger than yttrium doping. The samples show significant phonon confinement effect. That is to say, the characteristic Raman peaks blue shift and the full widths at half height increase and the peak shap easymmetricaly stretches with decrease of grain size.
    • 基金项目: 国家自然科学基金(批准号:60876045),上海市重点学科建设项目(批准号:S30105),上海市教委创新基金(批准号:08YZ12),SHU-SOEN's PV 联合实验室基金(批准号:SS-E0700601)和上海市基础研究重点项目(批准号:09JC1405900)资助的课题.
    [1]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [2]

    Liang L Y, Dai S Y, Hu L H, Dai J, Liu W Q 2009 Acta Phys. Sin. 58 1338 (in Chinese)[梁林云、戴松元、胡林华、戴 俊、刘伟庆 2008 物理学报 58 1338]

    [3]

    Kashif N, Ou Y F 2009 J Environ. Sci-China 21 527

    [4]

    Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M 2008 Environ. Pollut. 156 233

    [5]

    Uroebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [6]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [7]

    Wu J C S, Chen C H 2004 J. Photochem. Photobiol. A: Chemistry 163 509

    [8]

    Zhang C Q, Zhang X 1997 Rare Earth Metallurgy Principles and Processes (Beijing: Metallurgical Industry Press) p58 (in Chinese) [张长鑫、张 新 1997 稀土冶金原理与工艺 (北京: 冶金工业出版社) 第58页]

    [9]

    Ivanda M, Musi Dc' S, Goti Dc' M, Turkovi Dc' A, Tonejc A M, Gamulin O 1999 J. Mol. Struct. 480-481 641

    [10]

    Mathews N R, Morales E R, Cortés-Jacome M A, Toledo Antonio J A 2009 Solar Energy 83 1499

    [11]

    Zeng Q G, Ding Z J, Zhang Z M 2006 J. Lumin. 118 301

    [12]

    Saif M, Abdel-Mottaleb M S A 2007 Inorg. Chim. Acta 360 2863

    [13]

    Chen S Y, Ting C C, Hsieh W F 2003 Thin Solid Films 434 171

    [14]

    Battisha I K 2007 J. Non-Cryst. Solids 353 1748

    [15]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140

    [16]

    Wu X H, Qin W, Wang S, Jiang Z H, Guo Y, Xie Z Y 2006 Rare Metals 25 169

    [17]

    Prociow E L, Domaradzki J, Podhorodecki A, Borkowska A, Kaczmarek D, Misiewicz J 2007 Thin Solid Films 515 6344

    [18]

    Zhang W J, Wang K L, Zhu S L, Li Y, Wang F H, He H B 2009 Chem. Eng. J. 155 83

    [19]

    Huang H, Luo H J, Yao X 2002 Acta Phys. Sin. 51 1881 (in Chinese)[黄 晖、罗宏杰、姚 熹 2002 物理学报 51 1881]

    [20]

    Balachandran U, Eror N G 1982 J. Solid State Chem. 42 276

    [21]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. ReV. B 71 184302

    [22]

    Orendorz A, Brodyanski A, Lsch J, Bai L H, Chen Z H, Le Y K, Ziegler C, Gnaser H 2007 Surf. Sci. 601 4390

    [23]

    Foger K, Anderson J R 1986 Appl. Catal. A23 139

    [24]

    Xia B, Huang H, Xie Y 1999 Mater. Sci. Eng. B 57 150

    [25]

    Hyun C C, Young M J, Seung B K 2005 Vib. Spectrosc 37 33

    [26]

    Turkovi Dc' A, Ivanda M, Popovi Dc' S, Toncjc A, Goti Dc' M, Dub Dc' ek P, Musi Dc' S 1997 J. Mol. Struct. 410 271

    [27]

    Musi Dc' S, Goti Dc' M, Ivanda M, Popovi Dc' S, Turkovi Dc' A, Trojko R, Sekuli Dc' A, Furi Dc' K 1997 Mater. Sci. Eng. B 47 33

    [28]

    Yin L S, Tan M, Chen Y P, Li T, Fan H L 2008 J. Cent. South Univ. (Science and Technology) 39 665 (in Chinese) [尹荔松、谭 敏、陈永平、李 婷、范海陆 2008 中南大学学报 (自然科学版) 39 665]

    [29]

    Ya J, Jia D, Liu Y Z 2001 Journal of the Chinese Ceramic Society 29 90 (in Chinese) [雅 菁、贾 堤、刘云兆 2001 硅酸盐学报 29 90]

    [30]

    Xu Z Y, Li P X 1986 Introduction to Marterial Science (Shanghai: Shanghai scientific & Technical Publishers) p326 (in Chinese) [徐祖耀、李鹏兴 1986 材料科学导论 (上海: 上海科技出版社) 第326页]

    [31]

    Zhang S L 2008 Raman spectroscopy and Low-dimensional Nanometer Semiconductor (Beijing: Science Press) p218 (in Chinese) [张树霖 2008 拉曼光谱学与低维纳米半导体 (北京: 科学出版社) 第218页]

    [32]

    Bersani D, Lottici P P, Ding X Z 1997 Appl. Phys. Lett. 72 73

  • [1]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]

    [2]

    Liang L Y, Dai S Y, Hu L H, Dai J, Liu W Q 2009 Acta Phys. Sin. 58 1338 (in Chinese)[梁林云、戴松元、胡林华、戴 俊、刘伟庆 2008 物理学报 58 1338]

    [3]

    Kashif N, Ou Y F 2009 J Environ. Sci-China 21 527

    [4]

    Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M 2008 Environ. Pollut. 156 233

    [5]

    Uroebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454

    [6]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [7]

    Wu J C S, Chen C H 2004 J. Photochem. Photobiol. A: Chemistry 163 509

    [8]

    Zhang C Q, Zhang X 1997 Rare Earth Metallurgy Principles and Processes (Beijing: Metallurgical Industry Press) p58 (in Chinese) [张长鑫、张 新 1997 稀土冶金原理与工艺 (北京: 冶金工业出版社) 第58页]

    [9]

    Ivanda M, Musi Dc' S, Goti Dc' M, Turkovi Dc' A, Tonejc A M, Gamulin O 1999 J. Mol. Struct. 480-481 641

    [10]

    Mathews N R, Morales E R, Cortés-Jacome M A, Toledo Antonio J A 2009 Solar Energy 83 1499

    [11]

    Zeng Q G, Ding Z J, Zhang Z M 2006 J. Lumin. 118 301

    [12]

    Saif M, Abdel-Mottaleb M S A 2007 Inorg. Chim. Acta 360 2863

    [13]

    Chen S Y, Ting C C, Hsieh W F 2003 Thin Solid Films 434 171

    [14]

    Battisha I K 2007 J. Non-Cryst. Solids 353 1748

    [15]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140

    [16]

    Wu X H, Qin W, Wang S, Jiang Z H, Guo Y, Xie Z Y 2006 Rare Metals 25 169

    [17]

    Prociow E L, Domaradzki J, Podhorodecki A, Borkowska A, Kaczmarek D, Misiewicz J 2007 Thin Solid Films 515 6344

    [18]

    Zhang W J, Wang K L, Zhu S L, Li Y, Wang F H, He H B 2009 Chem. Eng. J. 155 83

    [19]

    Huang H, Luo H J, Yao X 2002 Acta Phys. Sin. 51 1881 (in Chinese)[黄 晖、罗宏杰、姚 熹 2002 物理学报 51 1881]

    [20]

    Balachandran U, Eror N G 1982 J. Solid State Chem. 42 276

    [21]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. ReV. B 71 184302

    [22]

    Orendorz A, Brodyanski A, Lsch J, Bai L H, Chen Z H, Le Y K, Ziegler C, Gnaser H 2007 Surf. Sci. 601 4390

    [23]

    Foger K, Anderson J R 1986 Appl. Catal. A23 139

    [24]

    Xia B, Huang H, Xie Y 1999 Mater. Sci. Eng. B 57 150

    [25]

    Hyun C C, Young M J, Seung B K 2005 Vib. Spectrosc 37 33

    [26]

    Turkovi Dc' A, Ivanda M, Popovi Dc' S, Toncjc A, Goti Dc' M, Dub Dc' ek P, Musi Dc' S 1997 J. Mol. Struct. 410 271

    [27]

    Musi Dc' S, Goti Dc' M, Ivanda M, Popovi Dc' S, Turkovi Dc' A, Trojko R, Sekuli Dc' A, Furi Dc' K 1997 Mater. Sci. Eng. B 47 33

    [28]

    Yin L S, Tan M, Chen Y P, Li T, Fan H L 2008 J. Cent. South Univ. (Science and Technology) 39 665 (in Chinese) [尹荔松、谭 敏、陈永平、李 婷、范海陆 2008 中南大学学报 (自然科学版) 39 665]

    [29]

    Ya J, Jia D, Liu Y Z 2001 Journal of the Chinese Ceramic Society 29 90 (in Chinese) [雅 菁、贾 堤、刘云兆 2001 硅酸盐学报 29 90]

    [30]

    Xu Z Y, Li P X 1986 Introduction to Marterial Science (Shanghai: Shanghai scientific & Technical Publishers) p326 (in Chinese) [徐祖耀、李鹏兴 1986 材料科学导论 (上海: 上海科技出版社) 第326页]

    [31]

    Zhang S L 2008 Raman spectroscopy and Low-dimensional Nanometer Semiconductor (Beijing: Science Press) p218 (in Chinese) [张树霖 2008 拉曼光谱学与低维纳米半导体 (北京: 科学出版社) 第218页]

    [32]

    Bersani D, Lottici P P, Ding X Z 1997 Appl. Phys. Lett. 72 73

计量
  • 文章访问数:  7095
  • PDF下载量:  1020
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-25
  • 修回日期:  2010-01-06
  • 刊出日期:  2010-09-15

稀土钇、镧掺杂TiO2薄膜的拉曼谱分析

  • 1. (1)上海大学物理系索朗光伏材料与器件联合实验室,上海 200444; (2)上海大学物理系索朗光伏材料与器件联合实验室,上海 200444;长沙理工大学物理与电子科学学院,长沙 410004
    基金项目: 国家自然科学基金(批准号:60876045),上海市重点学科建设项目(批准号:S30105),上海市教委创新基金(批准号:08YZ12),SHU-SOEN's PV 联合实验室基金(批准号:SS-E0700601)和上海市基础研究重点项目(批准号:09JC1405900)资助的课题.

摘要: 采用溶胶-凝胶法在石英玻璃衬底上用旋涂法制备了未掺杂、掺杂钇和掺杂镧的TiO2薄膜样品,对样品在700—1100 ℃范围内进行退火处理,并对样品的拉曼光谱进行了分析.分析表明:随着退火温度的升高,未掺杂TiO2薄膜发生了从锐钛矿相经混相最终向金红石相的转换,掺杂钇和掺杂镧对TiO2薄膜的晶相转换起阻碍作用,掺杂镧的阻碍作用更强;稀土掺杂能使TiO2薄膜晶粒细化,并使晶粒内部应力增大从而阻碍晶格振动,掺杂镧比掺杂钇的效果

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回