搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学

刘胜利 厉建峥 程杰 王海云 李永涛 张红光 李兴鳌

引用本文:
Citation:

强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学

刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌

Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4

Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao
PDF
导出引用
  • 利用固相反应法成功制备了Sr2-xLaxIrO4系列掺杂样品, 并详细研究了样品晶体结构随掺杂的演变. 拉曼散射峰向高频移动和X射线衍射谱的结构精修数据发现随着掺杂量的增加, c轴晶格常数减小, 顶角Ir–O1键键长随之减小, 表明掺杂导致晶格收缩, 而且IrO6八面体畸变程度减弱. 变温拉曼散射谱显示随着温度降低也出现蓝移现象, 且与顶角氧相关的拉曼振动模式的蓝移在110 K附近出现明显跳变, 表明在该温度附近出现了结构变化和磁性质转变.
    Novel unconventional physical phenomena, such as metal-insulator transition, high temperature superconductivity, colossal magneto-resistance and quantum criticality, are usually found in transition metal oxides (TMOs) with layered perovskite structures. Great success has been achieved in 3d TMOs, in which the localized 3d states yield strongly correlated narrow bands with a large on-site Coulomb repulsion U and a small band width W. Anomalous insulating behaviors are reported in the 5d TMOs, such as Sr2IrO4 system, which is surprising since the 5d TMOs are usually considered as weakly correlated wide band systems with largely reduced on-site Coulomb repulsion U due to delocalized 5d states. The crystal structure of Sr2IrO4 consists of two-dimensional (2D) IrO2 layers, similar to the parent compound La2CuO4 of the cuprates. Theoretically, a variational Monte Carlo study of Sr2IrO4 suggests that d-wave like superconductivity may appear but only within a narrow region of electron doping. In contrast, an s±*-wave phase is established for hole doping deduced from functional renormalization group, and triggered by spin fluctuations within and across the two conduction bands. Moreover, triplet p-wave pairing state with relatively high transition temperature emerges on the hole-doped side when the Hund's coupling is comparable to spin-orbit coupling. Several experiments are tried to search for the predicted unconventional superconductivity due to both electron-and hole-doping. However, to the best of our knowledge, it has not been found yet in the carrier-doped Sr2IrO4 system. Hence, more detailed studies are needed to explore the potential superconductivity.#br#A series of La doped Sr2-xLaxIrO4 samples is synthesized based on solid state reaction method. The evolution of the crystal structure is studied by the X-ray diffraction, scanning electron microscopy, together with the Raman spectrum. It is found that the crystal constant of the c-axis decreases with increasing doping level as well as the apical Ir—O1 bond length, indicating the lattice construction. Moreover, the distortion of the IrO6 octahedron reduces with increasing doping level. Therefore, blue shift occurs of the Raman scattering peaks. The temperature dependence of the Raman spectrum is also studied. It is found that the frequencies of the A1g and B1g vibration modes increase with temperature decreasing and an abnormal jump occurs around 110 K, which is believed to be correlated with the structural change and the magnetic transition around this temperature.
    • 基金项目: 江苏省高校自然科学基金(批准号: 13KJB140012)、江苏省自然科学基金(批准号: BK20130376, BK20130855)、国家自然科学基金 (批准号: 51172110, 11405089)、苏州市科技局纳米技术专项基金(批准号: ZXG201444)和江苏省“六大人才高峰”高层次人才基金(批准号: 2014-XCL-015)资助的课题.
    • Funds: Project supported by the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140012), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130376, BK20130855), the National Natural Science Foundation of China (Grant Nos. 51172110, 11405089), the Nanotechnology Foundation of Suzhou Bureau of Science and Technology, China (Grant No. ZXG201444), and the “Six Talent Peaks Project” in Jiangsu Province, China (Grant No. 2014-XCL-015).
    [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198

    [3]

    Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402

    [4]

    Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135

    [5]

    Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109

    [6]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [7]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [8]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [9]

    Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002

    [10]

    Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201

    [11]

    Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001

    [12]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [13]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [14]

    Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201

    [15]

    Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210

    [16]

    Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)

    [17]

    Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777

    [18]

    Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101

    [19]

    Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105

    [20]

    Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117

    [21]

    Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257

    [22]

    Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015

    [23]

    Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]

    [24]

    Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355

    [25]

    Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148

    [26]

    Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005

    [27]

    Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406

  • [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198

    [3]

    Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402

    [4]

    Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135

    [5]

    Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109

    [6]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [7]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [8]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [9]

    Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002

    [10]

    Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201

    [11]

    Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001

    [12]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [13]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [14]

    Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201

    [15]

    Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210

    [16]

    Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)

    [17]

    Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777

    [18]

    Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101

    [19]

    Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105

    [20]

    Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117

    [21]

    Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257

    [22]

    Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015

    [23]

    Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]

    [24]

    Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355

    [25]

    Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148

    [26]

    Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005

    [27]

    Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406

  • [1] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220196
    [2] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变. 物理学报, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [3] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [4] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [5] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [6] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究 . 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [7] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [8] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [9] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [10] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [11] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [12] 汪丽莉, 熊 锐, 魏 伟, 胡 妮, 林 颖, 朱本鹏, 汤五丰, 余祖兴, 汤 征, 石 兢. 缺氧条件下准一维自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ的磁化率特性研究. 物理学报, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [13] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [14] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [15] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [16] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子. 物理学报, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [17] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [18] 严成锋, 赵广军, 杭 寅, 张连翰, 徐 军. Ce:Lu2Si2O7闪烁晶体的结构和光谱特性. 物理学报, 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  3080
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05
  • 修回日期:  2015-06-16
  • 刊出日期:  2015-10-05

强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学

  • 1. 南京邮电大学先进功能陶瓷研究中心, 南京 210003;
  • 2. 南京大学(苏州)高新技术研究院, 苏州 215123;
  • 3. 南京邮电大学电子科学与工程学院, 南京 210003;
  • 4. 南京邮电大学材料科学与工程学院, 南京 210003
    基金项目: 江苏省高校自然科学基金(批准号: 13KJB140012)、江苏省自然科学基金(批准号: BK20130376, BK20130855)、国家自然科学基金 (批准号: 51172110, 11405089)、苏州市科技局纳米技术专项基金(批准号: ZXG201444)和江苏省“六大人才高峰”高层次人才基金(批准号: 2014-XCL-015)资助的课题.

摘要: 利用固相反应法成功制备了Sr2-xLaxIrO4系列掺杂样品, 并详细研究了样品晶体结构随掺杂的演变. 拉曼散射峰向高频移动和X射线衍射谱的结构精修数据发现随着掺杂量的增加, c轴晶格常数减小, 顶角Ir–O1键键长随之减小, 表明掺杂导致晶格收缩, 而且IrO6八面体畸变程度减弱. 变温拉曼散射谱显示随着温度降低也出现蓝移现象, 且与顶角氧相关的拉曼振动模式的蓝移在110 K附近出现明显跳变, 表明在该温度附近出现了结构变化和磁性质转变.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回