搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米棒复合体的消光特性

黄运欢 李璞

引用本文:
Citation:

金纳米棒复合体的消光特性

黄运欢, 李璞

Extinction properties of gold nanorod complexes

Huang Yun-Huan, Li Pu
PDF
导出引用
  • 金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.
    Plasmonics with subwavelength characteristics can break the diffraction limit of light and be used to produce the sub-wavelength optoelectronic device, thus it has aroused great interest for decades. Local surface plasmon resonance of metal nanoparticles has become one of the research hotspots due to the fact it can produce extinction and near-field enhancement effect. How to achieve controllable plasmon line shape and generate strong electromagnetic field enhancement is of great significance for improving the sensing performance, nonlinear effect and surface enhanced Raman factor of metallic nanostructures. The optical properties of plasmonic oligomer clusters composed of normal and L-shaped nanrod dimers are investigated by using the finite-difference time-domain method in this paper. There are two energy modes for an L-shaped nanorod due to its shaped anisotropy, where plasmons oscillate along the arms of the L-shaped nanorod or oscillate over the whole length of the L-shaped nanorod. Therefore, two bonding resonances appear in the spectrum of an L-shaped nanorod dimer, while only one bonding resonance exists for normal nanorod dimer. When a normal nanorod dimer and an L-shaped nanorod dimer are aligned together to form a quadrumer, the three bonding resonances can be excited simultaneously and radiative damping can be suppressed effectively around the dip spectral positions. It is shown that the optical responses of quadrumer can be strongly tuned by manipulating the geometry parameters. For example, the coupling between the two dimers can be modified by adjusting the separation, and the three resonances shift toward higher energies with the increasing of the separation. In addition, the optical responses of individual nanorod depend on the corresponding arm length. As a result, the three resonances of the quadrumer can also be well tuned by adjusting the arm length. Comparing the variation of resonance peak positions between L-shaped nanorod dimer and normal nanorod dimer, we can more intuitively understand spectral lineshape variation of quadrumer. These results can be used for guiding the design of nano-photonic devices for plasmonic oligomer clusters and also for developing the application of surface-enhanced Raman scattering and biological sensing.
    • 基金项目: 国家自然科学基金(批准号: 61205142, 51404165)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205142, 51404165).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [5] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于black phosphorus纳米棒耦合的等离激元诱导透明. 物理学报, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [7] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [8] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [9] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [10] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [11] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [12] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [13] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构. 物理学报, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [14] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [15] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [16] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [17] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [18] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [19] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [20] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
计量
  • 文章访问数:  6685
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 修回日期:  2015-06-21
  • 刊出日期:  2015-10-05

/

返回文章
返回