搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称纳米棒三聚体结构的Fano共振特性研究

李爱云 张兴坊 刘凤收 闫昕 梁兰菊

引用本文:
Citation:

对称纳米棒三聚体结构的Fano共振特性研究

李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊

Fano resonances in symmetric gold nanorod trimers

Li Ai-Yun, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju
PDF
HTML
导出引用
  • 利用时域有限差分方法, 理论研究了由中间短棒和两侧长棒构成的对称金纳米棒三聚体结构的光学性质, 分析了结构参数和介电环境对其Fano共振特性的影响. 结果表明: 随着中间短棒长度、三棒整体尺寸或短棒两侧介质折射率的减小, Fano共振谷蓝移; 棒间距的增大同样导致Fano共振谷蓝移, 但边棒长度的变化对Fano共振谷位的影响较小; 同时, 随着纳米结构参数或介电环境的变化, Fano共振谷两侧共振峰强度发生改变, 共振对比度先增大后减小. 通过比较纳米结构截面的电磁场和电流密度矢量分布发现, 共振谷两侧光谱强度的变化源于结构参数或介电环境引起的等离激元共振模式的改变. 研究结果对基于Fano共振可控的纳米结构设计有一定的参考意义.
    A symmetrical gold nanorod trimer structure consisting of a short center nanorod and two long nanorods on both sides is proposed. The scattering spectra, electromagnetic field and current density vector distributions across the central cross section of the nanorod trimer are calculated by the finite difference time domain method, and the effects of structural parameters and dielectric environment on Fano resonance characteristics are theoretically investigated in detail. The results show that the Fano resonance can be generated mainly due to the interference between the bonding electric dipole mode in lower energy and the antibonding electric dipole mode or antiphase magnetic dipole mode in higher energy. The Fano dip is blue-shifted with the decrease in the short nanorod length, the size of whole trimer structure with constant displacement, or the refractive index of dielectric medium in the gaps between the central nanorod and two side nanorods; the resonance intensity on both sides of the Fano dip also changes. Meanwhile, the bonding mode on the red side of the Fano dip is gradually dominated by the electric dipole mode of two side nanorods, and the spectral intensity increases, while the antibonding mode on the blue side gradually evolves into the short nanorod-dominated antiphase magnetic dipole mode, and the spectral intensity becomes weaker. The increase in the inter-rod spacing also leads the Fano dip to be blue-shifted, and a similar change in the spectral intensity occurs on both sides of the Fano dip, due to the degeneration of bonding and antibonding modes caused by the decrease of near-field coupling between the short nanorod and two side nanorods, which finally degenerate into the electric dipole modes generated by the short nanorod or the two side nanorods, respectively. In addition, the Fano dip is insensitive to the change of the side nanorod length, but the relative resonance intensity on both sides of the Fano dip also changes. Furthermore, it is found that the spectral contrast ratio of the Fano resonance first increases and then decreases by varying the above-mentioned structural parameters or dielectric environment. These results are expected to be used for guiding the design of Fano controllable nanostructures and also for developing the applications of specific micro-nano photonics.
      通信作者: 张兴坊, zxf4114@126.com
    • 基金项目: 国家自然科学基金(批准号: 61701434)、山东省自然基金(批准号: ZR2017MF005, ZR2018LF001)、山东省高等学校科技计划(批准号: J17KA087)和枣庄市光电信息功能材料与微纳器件重点实验室资助的课题
      Corresponding author: Zhang Xing-Fang, zxf4114@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701434), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017MF005, ZR2018LF001), the Project of Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA087), and the Key Laboratory of Optoelectronic Information Functional Materials and Micronano Devices in Zaozhuang, China
    [1]

    Zhang S P, Xu H X 2016 Nanoscale 8 13722Google Scholar

    [2]

    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia R A 2013 Nano Lett. 13 6287Google Scholar

    [3]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 3694Google Scholar

    [4]

    Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H 2017 Opt. Lett. 42 450Google Scholar

    [5]

    Zhang J, Chen S, Wang J,Mu K, Fan C, Liang E, Ding P 2018 Sci. Rep. 8 740Google Scholar

    [6]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [7]

    Chen J, Gan F, Wang Y, Li G 2018 Adv. Opt. Mater. 6 1701152Google Scholar

    [8]

    Huang C Y, Chang H C 2019 IEEE Photon. J. 11 4800208Google Scholar

    [9]

    Li G Z, Hu H J, Wu L 2019 Phys. Chem. Chem. Phys. 21 7654Google Scholar

    [10]

    Wu C, Khanikaev A B, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar

    [11]

    Chang W S, Lassiter J B, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas N J, Link S 2012 Nano Lett. 12 4977Google Scholar

    [12]

    Yu Y, Xue W, Semenova E, Yvind K, Mork J 2017 Nat. Photon. 11 81Google Scholar

    [13]

    Hu H J, Zhang F W, Li G Z, Chen J Y, Li Q, Wu L J 2018 Photon. Res. 6 204Google Scholar

    [14]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [15]

    黄运欢, 李璞 2015 物理学报 64 207301Google Scholar

    Huang Y H, Li P 2015 Acta Phys. Sin. 64 207301Google Scholar

    [16]

    Zhang Y, Jia T Q, Zhang H M, Xu Z Z 2012 Opt. Lett. 37 4919Google Scholar

    [17]

    Fu Y H, Zhang J B, Yu Y F, Lukyanchuk B 2012 ACS Nano 6 5130Google Scholar

    [18]

    Zhao W, Jiang Y 2015 Opt. Lett. 40 93Google Scholar

    [19]

    Yang Z J, Wang Q Q, Lin H Q 2013 Appl. Phys. Lett. 103 111115Google Scholar

    [20]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [21]

    Wang J, Liu X, Li L, He J, Fan C, Tian Y, Ding P, Chen D, Xue Q, Liang E 2013 J. Opt. 15 105003Google Scholar

    [22]

    Dong Z G, Liu H, Xu M X, Li Tao, Wang S M, Zhu S N, Zhang X 2010 Opt. Express 18 18229Google Scholar

    [23]

    Jin X R, Park J, Zheng H, Lee S, Lee Y, Rhee J Y, Kim K W, Cheong H S, Jang W H 2011 Opt. Express 19 21652Google Scholar

    [24]

    Bozhevolnyi S I, Evlyukhin A B, Pors A, Nielsen M G, Willatzen M, Albrektsen O 2011 New J. Phys. 13 023034Google Scholar

    [25]

    Yang Z J, Zhang Z S, Zhang L H, Li Q Q, Hao Z H, Wang Q Q 2011 Opt. Lett. 36 1542Google Scholar

    [26]

    Kai G, Zhang Y L, Qian C, Fung K H 2018 Opt. Express 26 11984Google Scholar

    [27]

    Liu G D, Zhai X, Wang L L, Wang B X, Lin Q, Shang X J 2016 Plasmonics 11 381Google Scholar

    [28]

    Liu S D, Leong E S P, Li G C, Hou Y, Deng J, Teng J H, Ong H C, Lei D Y 2016 ACS Nano 10 1442Google Scholar

    [29]

    Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236Google Scholar

    [30]

    Li G, Li Q, Xu L, Wu L 2015 Plasmonics 10 1401Google Scholar

    [31]

    丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102Google Scholar

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102Google Scholar

    [32]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Vol. 2) (Boston: Artech House) pp75−85

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [34]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [35]

    Feng R, Qiu J, Liu L, Ding W, Chen L 2014 Opt. Express 22 A1713Google Scholar

    [36]

    Hu X, Huang Y, Yuan S, Liu Y, Jiao Z, Wang Y, Huang Q, Yu J, Xia J 2015 Plasmonics 10 1817Google Scholar

  • 图 1  对称金纳米棒三聚体结构的模型示意图

    Fig. 1.  Geometrical structure of the symmetric Au nanorod trimer structure.

    图 2  金纳米棒三聚体的散射谱和吸收谱, 插图为在两个散射共振峰位971, 1319和共振谷1229 nm处的纳米结构截面电场和电流密度矢量分布

    Fig. 2.  Scattering and absorption spectra of a single gold nanorod trimer. Insets show the calculated electric field and current density vector distributions across the central cross section of the nanorod trimer at the indicated resonances.

    图 3  金纳米棒三聚体的散射谱随中间短棒变化的关系, 插图为在指定频率处的纳米结构截面电磁场和电流密度矢量分布

    Fig. 3.  Scattering spectra of the nanorod trimer versus the length of center nanorod Li. Insets show the calculated electric field, magnetic field in the z-direction and current density vector distributions at the indicated resonances.

    图 4  金纳米棒三聚体的散射谱随边棒变化的关系, 插图为在指定散射共振峰位处的纳米结构截面电磁场和电流密度矢量分布

    Fig. 4.  Scattering spectra of the nanorod trimer versus the length of side nanorod Lo. Insets show the calculated electric field, magnetic field in the z-direction and current density vector distributions at the indicated resonances.

    图 5  金纳米棒三聚体的散射谱随三棒尺寸变化的关系, 插图为在指定散射共振峰位处的纳米结构截面电磁场和电流密度矢量分布

    Fig. 5.  Scattering spectra of the nanorod trimer versus the nanorod length with constant displacement ΔL = 100 nm. Insets show the calculated electric field, magnetic field in the z-direction and current density vector distributions at the indicated resonances.

    图 6  金纳米棒三聚体的散射谱随棒间距变化的关系, 插图为在指定散射共振峰位处的纳米结构截面电场和电流密度矢量分布

    Fig. 6.  Scattering spectra of the nanorod trimer versus inter-rod spacing d. Insets show the calculated electric field and current density vector distributions at the indicated resonances.

    图 7  当短棒与边棒的间隙内介电环境变化时, 金纳米棒三聚体的散射谱随介质折射率变化的关系, 插图为在两个散射共振峰位处的纳米结构截面电磁场和电流密度矢量分布

    Fig. 7.  Scattering spectra of the nanorod trimer with different media in the gaps between the center and side nanorods. Insets show the calculated electric field, magnetic field in the z-direction and current density vector distributions at the indicated resonances.

  • [1]

    Zhang S P, Xu H X 2016 Nanoscale 8 13722Google Scholar

    [2]

    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia R A 2013 Nano Lett. 13 6287Google Scholar

    [3]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 3694Google Scholar

    [4]

    Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H 2017 Opt. Lett. 42 450Google Scholar

    [5]

    Zhang J, Chen S, Wang J,Mu K, Fan C, Liang E, Ding P 2018 Sci. Rep. 8 740Google Scholar

    [6]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [7]

    Chen J, Gan F, Wang Y, Li G 2018 Adv. Opt. Mater. 6 1701152Google Scholar

    [8]

    Huang C Y, Chang H C 2019 IEEE Photon. J. 11 4800208Google Scholar

    [9]

    Li G Z, Hu H J, Wu L 2019 Phys. Chem. Chem. Phys. 21 7654Google Scholar

    [10]

    Wu C, Khanikaev A B, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar

    [11]

    Chang W S, Lassiter J B, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas N J, Link S 2012 Nano Lett. 12 4977Google Scholar

    [12]

    Yu Y, Xue W, Semenova E, Yvind K, Mork J 2017 Nat. Photon. 11 81Google Scholar

    [13]

    Hu H J, Zhang F W, Li G Z, Chen J Y, Li Q, Wu L J 2018 Photon. Res. 6 204Google Scholar

    [14]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [15]

    黄运欢, 李璞 2015 物理学报 64 207301Google Scholar

    Huang Y H, Li P 2015 Acta Phys. Sin. 64 207301Google Scholar

    [16]

    Zhang Y, Jia T Q, Zhang H M, Xu Z Z 2012 Opt. Lett. 37 4919Google Scholar

    [17]

    Fu Y H, Zhang J B, Yu Y F, Lukyanchuk B 2012 ACS Nano 6 5130Google Scholar

    [18]

    Zhao W, Jiang Y 2015 Opt. Lett. 40 93Google Scholar

    [19]

    Yang Z J, Wang Q Q, Lin H Q 2013 Appl. Phys. Lett. 103 111115Google Scholar

    [20]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [21]

    Wang J, Liu X, Li L, He J, Fan C, Tian Y, Ding P, Chen D, Xue Q, Liang E 2013 J. Opt. 15 105003Google Scholar

    [22]

    Dong Z G, Liu H, Xu M X, Li Tao, Wang S M, Zhu S N, Zhang X 2010 Opt. Express 18 18229Google Scholar

    [23]

    Jin X R, Park J, Zheng H, Lee S, Lee Y, Rhee J Y, Kim K W, Cheong H S, Jang W H 2011 Opt. Express 19 21652Google Scholar

    [24]

    Bozhevolnyi S I, Evlyukhin A B, Pors A, Nielsen M G, Willatzen M, Albrektsen O 2011 New J. Phys. 13 023034Google Scholar

    [25]

    Yang Z J, Zhang Z S, Zhang L H, Li Q Q, Hao Z H, Wang Q Q 2011 Opt. Lett. 36 1542Google Scholar

    [26]

    Kai G, Zhang Y L, Qian C, Fung K H 2018 Opt. Express 26 11984Google Scholar

    [27]

    Liu G D, Zhai X, Wang L L, Wang B X, Lin Q, Shang X J 2016 Plasmonics 11 381Google Scholar

    [28]

    Liu S D, Leong E S P, Li G C, Hou Y, Deng J, Teng J H, Ong H C, Lei D Y 2016 ACS Nano 10 1442Google Scholar

    [29]

    Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236Google Scholar

    [30]

    Li G, Li Q, Xu L, Wu L 2015 Plasmonics 10 1401Google Scholar

    [31]

    丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102Google Scholar

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102Google Scholar

    [32]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Vol. 2) (Boston: Artech House) pp75−85

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [34]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [35]

    Feng R, Qiu J, Liu L, Ding W, Chen L 2014 Opt. Express 22 A1713Google Scholar

    [36]

    Hu X, Huang Y, Yuan S, Liu Y, Jiao Z, Wang Y, Huang Q, Yu J, Xia J 2015 Plasmonics 10 1817Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [3] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [4] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于black phosphorus纳米棒耦合的等离激元诱导透明. 物理学报, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [6] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [7] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [8] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [9] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 物理学报, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [10] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [11] 崔宏飞, 李凯, 杨晨光, 贺淑莉. (Fe1-xCox)3BO5纳米棒磁性的研究. 物理学报, 2015, 64(5): 057501. doi: 10.7498/aps.64.057501
    [12] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [13] 华昀峰, 张冬, 章林溪. 半刚性高分子链螺旋结构诱导纳米棒的有序结构. 物理学报, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [14] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [15] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [16] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [17] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [18] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [19] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [20] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
计量
  • 文章访问数:  7472
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2019-07-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回