搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

劈裂环-盘二聚体结构的多重Fano共振

杨其利 张兴坊 刘凤收 闫昕 梁兰菊

引用本文:
Citation:

劈裂环-盘二聚体结构的多重Fano共振

杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊

Multiple Fano resonances in gold split ring disk dimers

Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju
PDF
HTML
导出引用
  • 利用时域有限差分方法, 理论研究了由劈裂环和圆盘构成的金二聚体结构的光学性质, 分析了劈裂环的缺口取向和对称性破缺程度对其Fano共振特性的影响. 结果表明, 当缺口方向平行于二聚体中心连线时, 劈裂环的奇数阶和偶数阶模式均能与圆盘的偶极模式作用产生Fano共振, 且随着劈裂环的进一步破缺, 更多的偶数阶Fano共振能被激发出来; 但当垂直时, 不管劈裂环的缺口背对圆盘还是面向圆盘, 二聚体仅有偶数阶Fano共振能被激发出来, 且随着劈裂环内层中心远离圆盘而增强, 随着劈裂环的进一步破缺, 缺口背对圆盘的二聚体还能激发出多个奇数阶Fano共振, 但同时也引起偶数阶Fano共振的减弱, 而缺口面向圆盘的二聚体则仅发生偶数阶Fano共振的略微增大. 这些结果可望对基于多重Fano共振的多波段光子器件设计有一定的参考意义.
    A plasmonic dimer composed of a gold split ring and a gold disk is proposed. The scattering spectra and electromagnetic field distributions on the surface of the dimer are calculated by the finite difference time domain method, and the effects of split gap orientation and structural symmetry breaking of the ring on Fano resonance characteristics are theoretically investigated in detail. The results show the multiple Fano resonances that can be formed due to the destructive interference between the electric dipole mode of the disk and multiple multipolar modes of the split ring, and the red shift when the symmetry breaking of the split ring is broken. When the split gap of the ring is parallel to the interparticle axis of the dimer, multiple Fano resonances based on the odd-order mode and the even-order mode of the split ring can be generated, and more even-order Fano resonances can be formed due to the further symmetry breaking of the split ring. In addition, a more refined scattering spectrum can be obtained as the ring internal surface moves far away from the disk along the interparticle axis. On the other hand, Fano resonances based on the lower order multipolar modes of the ring can be increased as they move away from the split gap. When the split gap of the ring is perpendicular to the interparticle axis of the dimer, only the even-order Fano resonances can be excited, and these resonances increase with the ring internal surface going away from the disk no matter whether the split gap of the ring faces the disk or not. As the structural symmetry of the dimer is further broken due to the ring internal surface moving along the split gap direction, the odd-order Fano resonance can be successfully produced in the dimer with the split gap coming back to the disk, at the same time, the even-order Fano resonances are gradually weaken perhaps due to the complicated competitive behaviors of spectral overlapping between the dipole mode of the disk and multipolar mode of the ring in energy. However, there is no odd-order Fano resonance appearing in the dimer with the split gap facing the disk except for a slightly increased even-order Fano resonance, as the structural symmetry of the dimer is further broken. These results are expected to be useful in designing multiple Fano controllable split ring disk dimers and also developing the application of multiwavelength micro-nano photonics.
      通信作者: 张兴坊, zxf4114@126.com
    • 基金项目: 山东省高校青创科技计划(批准号:2019 KJN001)、山东省自然科学基金 (批准号: ZR2018LF001)和泰山学者项目专项资金(批准号: tsqn201909150)资助的课题
      Corresponding author: Zhang Xing-Fang, zxf4114@126.com
    • Funds: Project supported by the Qingchuang Science and Technology Plan of Shandong Universities, China (Grant No. 2019KJN001), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018LF001), and the Project Special Funding of Taishan Scholar, China (Grant No. tsqn201909150)
    [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp107−138

    [2]

    Zheng C, Jia T, Zhao H, Xia Y, Zhang S, Feng D, Sun Z 2018 RSC Adv. 8 3381Google Scholar

    [3]

    Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J, Li H 2018 Nanoscale 10 19517Google Scholar

    [4]

    Li G, Hu H, Wu L 2019 Phys. Chem. Chem. Phys. 21 252Google Scholar

    [5]

    Zhang Y, Zhen Y, Neumann O, Day J K, Nordlander P, Halas N J 2014 Nat. Commun. 5 4424Google Scholar

    [6]

    Zhi L, Liu W, Li Z, Hua C, Chen S, Tian J 2017 Opt. Lett. 42 3117Google Scholar

    [7]

    Wan W, Zheng W, Chen Y, Liu Z 2014 Nanoscale 6 9093Google Scholar

    [8]

    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia R A 2013 Nano Lett. 13 6287Google Scholar

    [9]

    Liu S, Yue P, Zhang S, Wang M, Dai H, Chen Y, Nie Z, Cui Y, Han J, Duan H 2020 Adv. Opt. Mater. 8 1901109Google Scholar

    [10]

    Hu H, Zhang F, Li G, Chen J, Li Q, Wu L 2018 Photon. Res. 6 204Google Scholar

    [11]

    Dutta A, Alam K, Nuutinen T, Hulkko E, Vartiainen E M 2019 Opt. Express 27 30031Google Scholar

    [12]

    Yang L, Li P, Liu H, Tang X, Liu J 2015 Chem. Soc. Rev. 44 2837Google Scholar

    [13]

    Hao F, Larsson E M, Ali T A, Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar

    [14]

    Koya A N, Ji B, Hao Z, Lin J 2016 J. Opt. 18 055007Google Scholar

    [15]

    Dalius S, Gediminas L, Andrius V, Ilvinas K, Gintaras V 2017 Opt. Express 25 25113Google Scholar

    [16]

    Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Giessen H 2006 Opt. Express 14 8827Google Scholar

    [17]

    Liu S D, Yue P, Zhu M Q, Wen J, Lei D 2019 Opt. Express 27 26377Google Scholar

    [18]

    Li Y, Huo Y, Zhang Y and Zhang Z 2017 Plasmonics 12 1613Google Scholar

    [19]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [20]

    Wang W, Li Y, Peng J, Chen Z, Qian J, Chen J, Xu J, Sun Q 2014 J. Opt. 16 035002Google Scholar

    [21]

    Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q 2013 ACS Nano 7 11071Google Scholar

    [22]

    Sun B, Zhao L, Wang C, Yi X, Liu Z, Wang G, Li J 2014 J. Phys. Chem. C 118 25124Google Scholar

    [23]

    Wang L, Liu Z, Yi X, Zhang Y, Li H, Li J, Wang G 2016 J. Appl. Phys. 119 173106Google Scholar

    [24]

    Cui J, Ji B, Song X, Lin J 2019 Plasmonics 14 41Google Scholar

    [25]

    Zhang X, Liu F, Yan X, Liang L, Wei D 2020 J. Opt. 22 115003Google Scholar

    [26]

    Sheridan A K, Clark A W, Glidle A, Cooper J M, Cumming D R S 2007 Appl. Phys. Lett. 90 143105Google Scholar

    [27]

    Taflove A, Hagness S 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Vol. 2) (Boston: Artech House) pp75−85

    [28]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [29]

    Lovera A, Gallinet B, Nordlander P, Martin O 2013 ACS Nano 7 4527Google Scholar

    [30]

    Zhang Y, Jia T Q, Zhang H M, Xu Z Z 2012 Opt. Lett. 37 4919Google Scholar

    [31]

    Zhang L, Dong Z, Wang Y, Liu Y, Zhang S, Yang J K W, Qiu C 2015 Nanoscale 7 12018Google Scholar

    [32]

    Zong X, Li L, Liu Y 2019 Opt. Mater. Express 9 870Google Scholar

    [33]

    Hu Y, Noelck S J, Drezek R A 2010 ACS Nano 4 1521Google Scholar

    [34]

    Xiao F, Zhang J, Yu W, Zhu W, Zhao J 2020 Opt. Express 28 3000Google Scholar

    [35]

    Wang N, Zeisberger M, Huebner U, Giannini V, Schmidt M A 2019 Sci. Rep. 9 2873Google Scholar

  • 图 1  劈裂环-盘二聚体的几何结构示意图, 其中R = 150 nm, R1 = 170 nm, R2 = 200 nm, θ = 30°, g = 10 nm, 二聚体高度为30 nm

    Fig. 1.  Geometrical structure of the split ring-disk dimer, where R = 150 nm, R1 = 170 nm, R2 = 200 nm, θ = 30°, g = 10 nm, the height of dimer is 30 nm.

    图 2  φ = 0°和Δx = Δy = 0 nm时二聚体、单独圆盘和单独劈裂环的散射谱. 插图为对应共振波长处激发的二聚体表面电场Ez分布

    Fig. 2.  Scattering spectra of a single dimer, individual disk and individual split ring with φ = 0° and Δx = Δy = 0 nm. Insets show the calculated electric field distributions Ez on the surface of the dimer at the indicated resonances.

    图 3  固定φ = 0°和Δy = 0 nm, 二聚体的散射谱随(a) Δx = 0—20 nm, (b) Δx = –20—0 nm的变化. 插图为在指定频率处的二聚体表面电场分布

    Fig. 3.  Scattering spectra of the dimer with φ = 0° and Δy = 0 nm for different values of Δx: (a) Δx = 0–20 nm; (b) Δx = –20–0 nm. Insets show the calculated electric field (a) Ez (Δx = 20 nm), and (b) |E| (Δx = –20 nm) distributions at the indicated resonances.

    图 4  固定φ = 0°和Δx = 0 nm, Δy在–20—20 nm变化时二聚体散射谱的变化

    Fig. 4.  Scattering spectra of the dimer with φ = 0° and Δx = 0 nm for different values of Δy = –20–20 nm.

    图 5  固定φ = 90°, 二聚体的散射谱随(a) Δx = 0 nm, Δy在0—20 nm, (c) Δy = 0 nm, Δx在–20—20 nm改变时的变化; (b)在图(a)散射谱Δy = 0 nm或20 nm中指定频率处的二聚体表面电场分布

    Fig. 5.  Scattering spectra of the dimer with φ = 90° for different values of (a) Δy from 0 nm to 20 nm with Δx = 0 nm, and (c) Δx from –20 nm to 20 nm with Δy = 0 nm; (b) calculated electric field Ez distributions at the indicated resonances shown in Fig.(a) at Δy = 0 nm and 20 nm.

    图 6  φ = –90°时二聚体的散射谱随Δx, Δy的变化 (a) Δx = 0 nm, Δy从0 nm到20 nm; (b) Δy = 0 nm, Δx从–20 nm到20 nm. 插图为Δx = 0 nm, Δy = 20 nm时的散射谱中指定频率处的二聚体表面电场分布

    Fig. 6.  Scattering spectra of the dimer with φ = 90° for different values of (a) Δy from 0 nm to 20 nm with Δx = 0 nm, and (b) Δx from –20 nm to 20 nm with Δy = 0 nm. Inset show the calculated electric field Ez distributions at the indicated resonances with Δx = 0 nm and Δy = 20 nm.

  • [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp107−138

    [2]

    Zheng C, Jia T, Zhao H, Xia Y, Zhang S, Feng D, Sun Z 2018 RSC Adv. 8 3381Google Scholar

    [3]

    Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J, Li H 2018 Nanoscale 10 19517Google Scholar

    [4]

    Li G, Hu H, Wu L 2019 Phys. Chem. Chem. Phys. 21 252Google Scholar

    [5]

    Zhang Y, Zhen Y, Neumann O, Day J K, Nordlander P, Halas N J 2014 Nat. Commun. 5 4424Google Scholar

    [6]

    Zhi L, Liu W, Li Z, Hua C, Chen S, Tian J 2017 Opt. Lett. 42 3117Google Scholar

    [7]

    Wan W, Zheng W, Chen Y, Liu Z 2014 Nanoscale 6 9093Google Scholar

    [8]

    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia R A 2013 Nano Lett. 13 6287Google Scholar

    [9]

    Liu S, Yue P, Zhang S, Wang M, Dai H, Chen Y, Nie Z, Cui Y, Han J, Duan H 2020 Adv. Opt. Mater. 8 1901109Google Scholar

    [10]

    Hu H, Zhang F, Li G, Chen J, Li Q, Wu L 2018 Photon. Res. 6 204Google Scholar

    [11]

    Dutta A, Alam K, Nuutinen T, Hulkko E, Vartiainen E M 2019 Opt. Express 27 30031Google Scholar

    [12]

    Yang L, Li P, Liu H, Tang X, Liu J 2015 Chem. Soc. Rev. 44 2837Google Scholar

    [13]

    Hao F, Larsson E M, Ali T A, Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar

    [14]

    Koya A N, Ji B, Hao Z, Lin J 2016 J. Opt. 18 055007Google Scholar

    [15]

    Dalius S, Gediminas L, Andrius V, Ilvinas K, Gintaras V 2017 Opt. Express 25 25113Google Scholar

    [16]

    Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Giessen H 2006 Opt. Express 14 8827Google Scholar

    [17]

    Liu S D, Yue P, Zhu M Q, Wen J, Lei D 2019 Opt. Express 27 26377Google Scholar

    [18]

    Li Y, Huo Y, Zhang Y and Zhang Z 2017 Plasmonics 12 1613Google Scholar

    [19]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [20]

    Wang W, Li Y, Peng J, Chen Z, Qian J, Chen J, Xu J, Sun Q 2014 J. Opt. 16 035002Google Scholar

    [21]

    Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q 2013 ACS Nano 7 11071Google Scholar

    [22]

    Sun B, Zhao L, Wang C, Yi X, Liu Z, Wang G, Li J 2014 J. Phys. Chem. C 118 25124Google Scholar

    [23]

    Wang L, Liu Z, Yi X, Zhang Y, Li H, Li J, Wang G 2016 J. Appl. Phys. 119 173106Google Scholar

    [24]

    Cui J, Ji B, Song X, Lin J 2019 Plasmonics 14 41Google Scholar

    [25]

    Zhang X, Liu F, Yan X, Liang L, Wei D 2020 J. Opt. 22 115003Google Scholar

    [26]

    Sheridan A K, Clark A W, Glidle A, Cooper J M, Cumming D R S 2007 Appl. Phys. Lett. 90 143105Google Scholar

    [27]

    Taflove A, Hagness S 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Vol. 2) (Boston: Artech House) pp75−85

    [28]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [29]

    Lovera A, Gallinet B, Nordlander P, Martin O 2013 ACS Nano 7 4527Google Scholar

    [30]

    Zhang Y, Jia T Q, Zhang H M, Xu Z Z 2012 Opt. Lett. 37 4919Google Scholar

    [31]

    Zhang L, Dong Z, Wang Y, Liu Y, Zhang S, Yang J K W, Qiu C 2015 Nanoscale 7 12018Google Scholar

    [32]

    Zong X, Li L, Liu Y 2019 Opt. Mater. Express 9 870Google Scholar

    [33]

    Hu Y, Noelck S J, Drezek R A 2010 ACS Nano 4 1521Google Scholar

    [34]

    Xiao F, Zhang J, Yu W, Zhu W, Zhao J 2020 Opt. Express 28 3000Google Scholar

    [35]

    Wang N, Zeisberger M, Huebner U, Giannini V, Schmidt M A 2019 Sci. Rep. 9 2873Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20232025
    [2] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学. 物理学报, 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [3] 李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰. BCl3同位素分离中二聚体的浓度. 物理学报, 2022, 71(24): 243401. doi: 10.7498/aps.71.20221517
    [4] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [5] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [6] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面. 物理学报, 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [7] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [8] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [9] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [10] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 物理学报, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [11] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [12] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [13] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [14] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [15] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [16] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [17] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [18] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [19] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [20] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究. 物理学报, 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
计量
  • 文章访问数:  2864
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-10-14
  • 上网日期:  2022-01-08
  • 刊出日期:  2022-01-20

/

返回文章
返回