-
等离激元纳腔可有效调控稀土掺杂纳米晶的上转换发光特性, 其不仅能增强上转换发光强度, 还可实现上转换发光光谱的调节. 然而, 目前利用纳腔进行上转化发光光谱调节的研究主要基于系综实验. 相比系综实验, 单颗粒实验由于可对同一颗上转换纳米晶进行对比研究, 因而能够排除系综样品非均匀性对实验的影响. 本文基于原子力显微镜原位纳米操纵技术将单颗粒Yb3+/Tm3+共掺杂纳米晶与由单根金纳米棒构成的等离激元纳腔进行耦合, 实验上对比了同一颗纳米晶与金纳米棒耦合前后上转换发光的光谱、发光寿命和激发功率依赖特性的变化. 实验结果与理论上通过结合电磁仿真和速率方程模拟得到的结果相符. 研究结果表明, 等离激元纳腔调控纳米晶上转换发光光谱是激发场增强效应、Purcell效应和辐射效率变化三方面效应共同作用的结果.Plasmonic nanocavities can effectively modulate the upconversion luminescence properties of lanthanide doped upconversion nanocrystals (UCNCs), which not only enhances the luminescence intensity, but also modifies the luminescence spectrum. However, currently reported studies of upconversion luminescence spectrum modulation by using nanocavities are mainly based on ensemble experiments. Compared with ensemble experiments, single-particle experiments facilitate the comparative studies for the same upconversion nanocrystal and therefore the influence of inhomogeneity in ensemble samples can be avoided. Here in this work, we couple a single particle of Yb3+/Tm3+ co-doped nanocrystal with a plasmonic nanocavity composed of a single gold nanorod by using the in-situ nano-manipulation technique based on an atomic force microscope. Experimentally, we compare the upconversion luminescence spectra, upconversion luminescence lifetimes and excitation-power dependent upconversion luminescence intensities of the same single nanocrystal before and after coupling with the single gold nanorod. The experimental measurements are consistent with the theoretical calculations from rate equations combined with electromagnetic simulations. The results indicate that the plasmaonic nanocavity modulated nanocrystal upconversion luminescence spectrum is the combined result of three effects: the excitation field enhancement effect, the Purcell effect and the change of radiation efficiency.
[1] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061Google Scholar
[2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10917Google Scholar
[3] Zhan Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, Ågren H, He S 2017 Nat. Commun. 8 1058Google Scholar
[4] Wang F, Wen S, He H, Wang B, Zhou Z, Shimoni O, Jin D 2018 Light-Sci. Appl. 7 18007Google Scholar
[5] Chen G, Ohulchanskyy T Y, Liu S, Law W-C, Wu F, Swihart M T, Ågren H, Prasad P N 2012 ACS Nano 6 2969Google Scholar
[6] Vetrone F, Naccache R, Zamarron A, de la Fuente A J, Sanz-Rodriguez F, Maestro L M, Rodriguez E M, Jaque D, Sole J G, Capobianco J A 2010 ACS Nano 4 3254Google Scholar
[7] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar
[8] Meruga J M, Baride A, Cross W, Kellar J J, May P S 2014 J. Mater. Chem. C 2 2221
[9] Liu H C, Jayakumar M K G, Huang K, Wang Z, Zheng X, Agren H, Zhang Y 2017 Nanoscale 9 1676Google Scholar
[10] Ren W, Lin G, Clarke C, Zhou J, Jin D 2020 Adv. Mater. 32 1901430Google Scholar
[11] Liu X, Chen Z H, Zhang H X, Fan Y, Zhang F 2021 Angew. Chem. Int. Ed. 60 7041Google Scholar
[12] Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D 2018 Nat. Commun. 9 2415Google Scholar
[13] Chen G, Ågren H, Ohulchanskyy T Y, Prasad P N 2015 Chem. Soc. Rev. 44 1680Google Scholar
[14] Han S, Deng R, Xie X, Liu X 2014 Angew. Chem. Int. Ed. 53 11702Google Scholar
[15] Gargas D J, Chan E M, Ostrowski A D, Aloni S, Altoe M V, Barnard E S, Sanii B, Urban J J, Milliron D J, Cohen B E, Schuck P J 2014 Nat. Nanotechnol. 9 300Google Scholar
[16] Liu Q, Zhang Y X, Peng C S, Yang T S, Joubert L M, Chu S 2018 Nat. Photonics 12 548Google Scholar
[17] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X 2011 Nat. Mater. 10 968Google Scholar
[18] Wu D M, Garcia-Etxarri A, Salleo A, Dionne J A 2014 J. Phys. Chem. Lett. 5 4020Google Scholar
[19] Park W, Lu D, Ahn S 2015 Chem. Soc. Rev. 44 2940Google Scholar
[20] Qin X, Neto A N C, Longo R L, Wu Y, Malta O L, Liu X 2021 J. Phys. Chem. Lett. 12 1520Google Scholar
[21] 周强, 林树培, 张朴, 陈学文 2019 物理学报 68 147104Google Scholar
Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar
[22] Aisaka T, Fujii M, Hayashi S 2008 Appl. Phys. Lett. 92 132105Google Scholar
[23] Esteban R, Laroche M, Greffet J J 2009 J. Appl. Phys. 105 033107Google Scholar
[24] Schietinger S, Aichele T, Wang H Q, Nann T, Benson O 2010 Nano Lett. 10 134Google Scholar
[25] Zhang H, Li Y, Ivanov I A, Qu Y, Huang Y, Duan X 2010 Angew. Chem. Int. Ed. 49 2865Google Scholar
[26] Deng W, Jin D, Drozdowicz-Tomsia K, Yuan J, Wu J, Goldys E M 2011 Adv. Mater. 23 4649Google Scholar
[27] Zhang W, Ding F, Chou S Y 2012 Adv. Mater. 24 OP236
[28] Greybush N J, Saboktakin M, Ye X, Della Giovampaola C, Oh S J, Berry N E, Engheta N, Murray C B, Kagan C R 2014 ACS Nano 8 9482Google Scholar
[29] Zhan Q Q, Zhang X, Zhao Y X, Liu J, He S L 2015 Laser Photonics Rev. 9 479Google Scholar
[30] Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W 2016 Adv. Mater. 28 2518Google Scholar
[31] Kwon S J, Lee G Y, Jung K, Jang H S, Park J-S, Ju H, Han I K, Ko H 2016 Adv. Mater. 28 7899Google Scholar
[32] Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y 2017 Adv. Funct. Mater. 27 1701842Google Scholar
[33] Xue Y X, Ding C J, Rong Y Y, Ma Q, Pan C D, Wu E, Wu B T, Zeng H P 2017 Small 13 1701155Google Scholar
[34] Das A, Mao C, Cho S, Kim K, Park W 2018 Nat. Commun. 9 4828Google Scholar
[35] Wu Y, Xu J, Poh E T, Liang L, Liu H, Yang J K W, Qiu C W, Vallée R A L, Liu X 2019 Nat. Nanotechnol. 14 1110Google Scholar
[36] Xu J H, Dong Z G, Asbahi M, Wu Y M, Wang H, Liang L L, Ng R J H, Liu H L, Vallee R A L, Yang J K W, Liu X G 2021 Nano Lett. 21 3044Google Scholar
[37] He J, Zheng W, Ligmajer F, Chan C F, Bao Z, Wong K-L, Chen X, Hao J, Dai J, Yu S-F, Lei D Y 2017 Light-Sci. Appl. 6 e16217Google Scholar
[38] Chen L, Rong Y, Ren M, Wu W, Qin M, Pan C, Ma Q, Liu S, Wu B, Wu E, Xu J, Zeng H 2018 J. Phys. Chem. C 122 15666Google Scholar
[39] Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W 2019 Adv. Mater. 31 1807900Google Scholar
[40] Sun Q C, Ding Y, Nagpal P 2019 ACS Appl. Mater. Interfaces 11 27011Google Scholar
[41] Chen G, Ding C, Wu E, Wu B, Chen P, Ci X, Liu Y, Qiu J, Zeng H 2015 J. Phys. Chem. C 119 22604Google Scholar
[42] Li H, Tan M L, Wang X, Li F, Zhang Y Q, Zhao L L, Yang C H, Chen G Y 2020 J. Am. Chem. Soc. 142 2023Google Scholar
[43] Tang J W, Xia J, Fang M D, Bao F L, Cao G J, Shen J Q, Evans J, He S L 2018 Nat. Commun. 9 1705Google Scholar
[44] Xia J, Tang J, Bao F, Sun Y, Fang M, Cao G, Evans J, He S 2020 Light-Sci. Appl. 9 166Google Scholar
[45] Malta O L 2008 J. Non-Cryst. Solids 354 4770Google Scholar
[46] Nadort A, Zhao J B, Goldys E M 2016 Nanoscale 8 13099Google Scholar
[47] Purcell E M 1946 Phys. Rev. 69 681
[48] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[49] Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press)
[50] Sokolov V I, Zvyagin A V, Igumnov S M, Molchanova S I, Nazarov M M, Nechaev A V, Savelyev A G, Tyutyunov A A, Khaydukov E V, Panchenko V Y 2015 Opt. Spectrosc. 118 609Google Scholar
[51] Zhang H, Li Y J, Lin Y C, Huang Y, Duan X F 2011 Nanoscale 3 963Google Scholar
-
图 1 实验系统和样品 (a) 实验系统和样品示意图, 其中DM代表二向色镜, M代表反射镜, 插图为核@壳@壳结构上转换纳米晶的结构示意图(黄色为
${\mathrm{Y}\mathrm{b}}^{3+}\text- {\mathrm{T}\mathrm{m}}^{3+}$ 共掺杂层); (b) 单颗粒上转换纳米晶(灰色线框)、单根金纳米棒(黑色线框)和两者耦合形成的复合结构(红色线框)的AFM表面形貌图, 图中标尺为50 nm; (c)与纳米晶耦合前后金纳米棒的散射谱线; (d)金纳米棒调控上转换发光的能级示意图Fig. 1. Experimental system and sample. (a) Schematics of the experimental system and sample. M, mirror; DM, dichroic mirror. The inset displays the core/shell/shell structure of the upconversion nanocrystal (UCNC), where the yellow color denotes the
$ {\mathrm{Y}\mathrm{b}}^{3+} $ -$ {\mathrm{T}\mathrm{m}}^{3+} $ codoping layer. (b) AFM topographic image of the single UCNC (grey box), gold nanorod (GNR) (black box) and UCNC-GNR coupled nanohybrid (red box). (c) Scattering spectrum of the single GNR before and after coupling with the UCNC. (d) Energy diagram of the upconversion luminescence modulated by the GNR.图 2 电磁仿真 (a) 电磁仿真时使用的金纳米棒-上转换纳米晶复合结构的几何参数; (b) 平面波照射下的局域场增强系数分布; (c) 仿真计算得到的纳米晶中心位置处Purcell系数与波长的关系; (d) 仿真计算得到的辐射效率与波长的关系
Fig. 2. Electromagnetic simulations: (a) Geometric parameters of the GNR-UCNC coupled nanohybrid for electromagnetic simulations; (b)distribution of field intensity enhancement coefficient under plane wave irradiation; (c) simulated Purcell factor at the center of the nanocrystal as a function of wavelength; (d) simulated radiation efficiency as a function of wavelength.
图 3 上转换发光寿命和光谱的调控实验 (a)同一颗纳米晶与金纳米棒耦合前后的800 nm上转换荧光衰减曲线; (b)同一颗纳米晶与纳腔耦合前后的上转换荧光光谱
Fig. 3. Experimental modulation of the upconversion luminescence lifetime and spectrum: (a) Upconversion luminescence decay curves (excited at 980 and emission at 800 nm) for the same UCNC before and after coupling with the GNR; (b) upconversion luminescence (UCL) spectrum of the same UCNC before and after coupling with the GNR, in the measurements the luminescence intensities are set the same for the three cases by controlling the excitation power.
图 4 激发功率相关上转换荧光调控实验及与模拟结果的对比 (a) 实验测得的同一颗纳米晶与金纳米棒耦合前后的功率相关上转换荧光强度曲线, 黑色、蓝色和红色阴影竖线标示出了图3(b)中对应颜色光谱的激发功率密度; (b) 模拟得到的同一颗纳米晶与金纳米棒耦合前后的功率相关上转换荧光强度曲线, 实线和虚线分别代表800 nm 和 455 nm上转换发光
Fig. 4. Experimental modulation of the excitation-power-dependent upconversion luminescence intensity and comparison with simulation: (a) Measured excitation-power-dependent upconversion luminescence intensity curves for the same UCNC before and after coupling with the GNR, the black, blue and red vertical lines indicate the excitation power densities for the measurement of the correspondingly colored spectra in Fig. 3(b); (b) simulated excitation-power-dependent upconversion luminescence intensity curves for the UCNC before and after coupling with the GNR, solid and dashed curves represent 800 nm and 455 nm emission respectively.
图 B1 金纳米棒直径对纳米晶上转换荧光调控的影响. 仿真得到的同一颗纳米晶与不同直径金纳米棒耦合前和耦合后的功率相关上转换荧光强度曲线. 实线和虚线分别表示800 nm 和 455 nm上转换发光. 激发偏振为x偏振
Fig. B1. Influence of the diameter of the GNR on the upconversion luminescence modulation. Simulated excitation-power-dependent upconversion luminescence intensity curves for the UCNC before and after coupling with the GNR. Solid and dashed curves represent 800 nm and 455 nm emission respectively. The excitation polarization is x-polarization.
表 A1 速率方程中的参数
Table A1. Parameters used in the rate equations.
参数/单位 值 参数/单位 值 $ {n}_{\mathrm{Y}\mathrm{b}} $/(1022 cm–3) 1.2 $ {\gamma }_{20} $/s–1 425 $ {n}_{\mathrm{T}\mathrm{m}} $/(1022 cm–3) 6.8 $ {\gamma }_{21} $/s–1 75 $ {\sigma }_{\mathrm{Y}\mathrm{b}} $/(10–20 cm2) 1 ${\gamma }_{ {2} 0} '$/s–1 2127.7 $ {w}_{0} $/(10–17 cm3·s–1) 1.2 ${\gamma }_{ {2}1}'$/s–1 1250 $ {w}_{1} $/(10–16 cm3·s–1) 4.2 $ {\gamma }_{30} $/s–1 855.3 $ {w}_{2} $/(10–18 cm3·s–1) 4.2 $ {\gamma }_{31} $/s–1 197.4 $ {w}_{\mathrm{b}} $/(10–18 cm3·s–1) 1.1 ${\gamma }_{3{1} } '$/s–1 210.5 $ {c}_{1} $/(10–18 cm3·s–1) 4.3 $ {\gamma }_{32} $/s–1 52.6 $ {c}_{2} $/(10–18 cm3·s–1) 5.3 $ {\gamma }_{40} $/s–1 8545.5 $ {c}_{3} $/(10–18 cm3·s–1) 5.3 $ {\gamma }_{41} $/s–1 7272.7 $ {c}_{4} $/(10–17 cm3·s–1) 1.5 $ {\gamma }_{42} $/s–1 545.5 ${\beta }_{ {1} } '$/(104 s–1) 3.4 ${\gamma }_{4{2}}'$/s–1 1636.4 ${\beta }_{ {2} }'$/(105 s–1) 5 $ {\gamma }_{2}^{\mathrm{n}\mathrm{r}} $/(105 s–1) 1 $ {\gamma }_{\mathrm{Y}\mathrm{b}} $/s–1 476.2 $ {\gamma }_{3}^{\mathrm{n}\mathrm{r}} $/(103 s–1) 2.5 $ {\gamma }_{10} $/s–1 162.6 -
[1] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061Google Scholar
[2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10917Google Scholar
[3] Zhan Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, Ågren H, He S 2017 Nat. Commun. 8 1058Google Scholar
[4] Wang F, Wen S, He H, Wang B, Zhou Z, Shimoni O, Jin D 2018 Light-Sci. Appl. 7 18007Google Scholar
[5] Chen G, Ohulchanskyy T Y, Liu S, Law W-C, Wu F, Swihart M T, Ågren H, Prasad P N 2012 ACS Nano 6 2969Google Scholar
[6] Vetrone F, Naccache R, Zamarron A, de la Fuente A J, Sanz-Rodriguez F, Maestro L M, Rodriguez E M, Jaque D, Sole J G, Capobianco J A 2010 ACS Nano 4 3254Google Scholar
[7] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar
[8] Meruga J M, Baride A, Cross W, Kellar J J, May P S 2014 J. Mater. Chem. C 2 2221
[9] Liu H C, Jayakumar M K G, Huang K, Wang Z, Zheng X, Agren H, Zhang Y 2017 Nanoscale 9 1676Google Scholar
[10] Ren W, Lin G, Clarke C, Zhou J, Jin D 2020 Adv. Mater. 32 1901430Google Scholar
[11] Liu X, Chen Z H, Zhang H X, Fan Y, Zhang F 2021 Angew. Chem. Int. Ed. 60 7041Google Scholar
[12] Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D 2018 Nat. Commun. 9 2415Google Scholar
[13] Chen G, Ågren H, Ohulchanskyy T Y, Prasad P N 2015 Chem. Soc. Rev. 44 1680Google Scholar
[14] Han S, Deng R, Xie X, Liu X 2014 Angew. Chem. Int. Ed. 53 11702Google Scholar
[15] Gargas D J, Chan E M, Ostrowski A D, Aloni S, Altoe M V, Barnard E S, Sanii B, Urban J J, Milliron D J, Cohen B E, Schuck P J 2014 Nat. Nanotechnol. 9 300Google Scholar
[16] Liu Q, Zhang Y X, Peng C S, Yang T S, Joubert L M, Chu S 2018 Nat. Photonics 12 548Google Scholar
[17] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X 2011 Nat. Mater. 10 968Google Scholar
[18] Wu D M, Garcia-Etxarri A, Salleo A, Dionne J A 2014 J. Phys. Chem. Lett. 5 4020Google Scholar
[19] Park W, Lu D, Ahn S 2015 Chem. Soc. Rev. 44 2940Google Scholar
[20] Qin X, Neto A N C, Longo R L, Wu Y, Malta O L, Liu X 2021 J. Phys. Chem. Lett. 12 1520Google Scholar
[21] 周强, 林树培, 张朴, 陈学文 2019 物理学报 68 147104Google Scholar
Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar
[22] Aisaka T, Fujii M, Hayashi S 2008 Appl. Phys. Lett. 92 132105Google Scholar
[23] Esteban R, Laroche M, Greffet J J 2009 J. Appl. Phys. 105 033107Google Scholar
[24] Schietinger S, Aichele T, Wang H Q, Nann T, Benson O 2010 Nano Lett. 10 134Google Scholar
[25] Zhang H, Li Y, Ivanov I A, Qu Y, Huang Y, Duan X 2010 Angew. Chem. Int. Ed. 49 2865Google Scholar
[26] Deng W, Jin D, Drozdowicz-Tomsia K, Yuan J, Wu J, Goldys E M 2011 Adv. Mater. 23 4649Google Scholar
[27] Zhang W, Ding F, Chou S Y 2012 Adv. Mater. 24 OP236
[28] Greybush N J, Saboktakin M, Ye X, Della Giovampaola C, Oh S J, Berry N E, Engheta N, Murray C B, Kagan C R 2014 ACS Nano 8 9482Google Scholar
[29] Zhan Q Q, Zhang X, Zhao Y X, Liu J, He S L 2015 Laser Photonics Rev. 9 479Google Scholar
[30] Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W 2016 Adv. Mater. 28 2518Google Scholar
[31] Kwon S J, Lee G Y, Jung K, Jang H S, Park J-S, Ju H, Han I K, Ko H 2016 Adv. Mater. 28 7899Google Scholar
[32] Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y 2017 Adv. Funct. Mater. 27 1701842Google Scholar
[33] Xue Y X, Ding C J, Rong Y Y, Ma Q, Pan C D, Wu E, Wu B T, Zeng H P 2017 Small 13 1701155Google Scholar
[34] Das A, Mao C, Cho S, Kim K, Park W 2018 Nat. Commun. 9 4828Google Scholar
[35] Wu Y, Xu J, Poh E T, Liang L, Liu H, Yang J K W, Qiu C W, Vallée R A L, Liu X 2019 Nat. Nanotechnol. 14 1110Google Scholar
[36] Xu J H, Dong Z G, Asbahi M, Wu Y M, Wang H, Liang L L, Ng R J H, Liu H L, Vallee R A L, Yang J K W, Liu X G 2021 Nano Lett. 21 3044Google Scholar
[37] He J, Zheng W, Ligmajer F, Chan C F, Bao Z, Wong K-L, Chen X, Hao J, Dai J, Yu S-F, Lei D Y 2017 Light-Sci. Appl. 6 e16217Google Scholar
[38] Chen L, Rong Y, Ren M, Wu W, Qin M, Pan C, Ma Q, Liu S, Wu B, Wu E, Xu J, Zeng H 2018 J. Phys. Chem. C 122 15666Google Scholar
[39] Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W 2019 Adv. Mater. 31 1807900Google Scholar
[40] Sun Q C, Ding Y, Nagpal P 2019 ACS Appl. Mater. Interfaces 11 27011Google Scholar
[41] Chen G, Ding C, Wu E, Wu B, Chen P, Ci X, Liu Y, Qiu J, Zeng H 2015 J. Phys. Chem. C 119 22604Google Scholar
[42] Li H, Tan M L, Wang X, Li F, Zhang Y Q, Zhao L L, Yang C H, Chen G Y 2020 J. Am. Chem. Soc. 142 2023Google Scholar
[43] Tang J W, Xia J, Fang M D, Bao F L, Cao G J, Shen J Q, Evans J, He S L 2018 Nat. Commun. 9 1705Google Scholar
[44] Xia J, Tang J, Bao F, Sun Y, Fang M, Cao G, Evans J, He S 2020 Light-Sci. Appl. 9 166Google Scholar
[45] Malta O L 2008 J. Non-Cryst. Solids 354 4770Google Scholar
[46] Nadort A, Zhao J B, Goldys E M 2016 Nanoscale 8 13099Google Scholar
[47] Purcell E M 1946 Phys. Rev. 69 681
[48] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[49] Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press)
[50] Sokolov V I, Zvyagin A V, Igumnov S M, Molchanova S I, Nazarov M M, Nechaev A V, Savelyev A G, Tyutyunov A A, Khaydukov E V, Panchenko V Y 2015 Opt. Spectrosc. 118 609Google Scholar
[51] Zhang H, Li Y J, Lin Y C, Huang Y, Duan X F 2011 Nanoscale 3 963Google Scholar
计量
- 文章访问数: 5624
- PDF下载量: 145
- 被引次数: 0