搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米球壳对的局域表面等离激元共振特性分析

邹伟博 周骏 金理 张昊鹏

引用本文:
Citation:

金纳米球壳对的局域表面等离激元共振特性分析

邹伟博, 周骏, 金理, 张昊鹏

Properties of localized surface plasmon resonance of gold nanoshell pairs

Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng
PDF
导出引用
  • 应用有限元方法, 研究金纳米球壳对的几何结构参数及物理参量对其表面等离激元共振的散射及消光光谱的影响, 并根据等离激元杂化理论进行了理论分析. 结果表明, 随着金壳厚度的增加, 金纳米球壳对的散射及消光共振峰先发生蓝移而后红移, 而随着金纳米球壳间隙的减小, 或者随着金纳米球壳的内核尺寸或内核介质折射率的增大, 散射及消光共振峰均发生红移; 随着金壳厚度或内核尺寸减小, 或者随着内核介质折射率增大, 金纳米球壳对的散射与消光共振强度减弱, 而随着金壳间隙的减小, 金纳米球壳对的散射共振强度先增强后减弱, 而消光共振强度逐渐增强, 数值模拟与理论分析一致.
    The characteristics of scatting and extinction spectra of gold nanoshell pairs, dependent on the its geometry and physical parameters, are investigated by the Finite Element Method based on the plasmon hybridization theory. The numerical results indicate that the resonante peaks in the scattering spectra and the extinction spectra emerge from blue-shift to red-shift with the increases of the thickness of gold nanoshells, whereas they present the red-shift with the decrease of the interparticle separation or with the increases of the size and the refractive index of inner core of gold nanoshells. In the same time, for the case of decreasing the inner core size and the shell thickness or increasing the refractive index of inner core, the intensity of the scattering resonance and the extinction resonance decrease. And, with the decrease of the interparticle separation, the intensity of the scattering resonance of gold nanoshell pairs trends to first increase and then decrease, while the intensity of the extinction resonance increases gradually. All the above is in agreement with the analysis of the plasmon hybridization theory.
    • 基金项目: 国家自然科学基金(批准号: 60977048), 宁波市国际科技合作计划(批准号: 2010D10018), 浙江省重中之重学科开放基金(批准号: xkzl1012, xkzl1208), 浙江省研究生创新科研项目(YK2009046) 和宁波大学王宽成幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60977048), the International Collaboration Program of Ningbo (Grant No. 2010D10018), the Project of Key Subject of Zhejiang (Grant Nos. xkzl1012, xkzl1208), the graduate innovative research project of Zhejiang (Grant No. YK2009046), and the K. C. Wong Magna Foundation of Ningbo University, China.
    [1]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [2]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [3]

    Jain P K, El-Sayed M A 2007 Phys. Chem. C Lett. 111 17451

    [4]

    Cao M, Wang M, Gu N 2009 J. Phys. Chem. C 113 1217

    [5]

    Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Nordlander P, Halas N J 2005 Nano. Lett. 5 1569

    [6]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [7]

    Zhou J, Zhang X Y, Yonzon C R, Haes A J, Van Duyne R P 2006 Nanomedicine 1 219

    [8]

    Larsson E M, Alegret J, Kall M, Sutherland D S 2007 Nano. Lett. 7 1256

    [9]

    Haes A J, Hall W P, Chang L, Klein W L, Van Duyen R P 2004 Nano. Lett 4 1029

    [10]

    Zhou S, Honma HSI, Komiyama H 1994 Phys. Rev. B 50 12052

    [11]

    Nehi C L, Grady N K, Goodrich G P, Tam F, Halas N J, Hafner J H 2004 Nano. Lett. 4 2355

    [12]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [13]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [14]

    Brandl D W, Oubre C, Nordlander P 2005 J. Chem. Phys. 123 024701

    [15]

    Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P, Halas N J 2008 Nano Lett. 8 1212

    [16]

    Khoury C G, Norton S J, Vo-Dinh T 2009 ACS Nano 3 2776

    [17]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [18]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [19]

    Wu D J, Liu X J 2009 Appl. Phys. B 97 193

    [20]

    Nordlander P, Oubre C 2004 Nano. Lett. 4 899

    [21]

    Knight M W, Halas N J 2008 New J. Phys. 10 105006

    [22]

    Stratton J 1941 Electromagnetic Theory (New York: McGraw-Hill)

    [23]

    Grady N K, Halas N J, Nordlander P 2004 Chem. Phys. Lett. 399 167

    [24]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano. Lett. 9 887

    [25]

    Prodan E, Lee A, Nordlander P 2002 Chem. Phys. Lett. 360 325

  • [1]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [2]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [3]

    Jain P K, El-Sayed M A 2007 Phys. Chem. C Lett. 111 17451

    [4]

    Cao M, Wang M, Gu N 2009 J. Phys. Chem. C 113 1217

    [5]

    Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Nordlander P, Halas N J 2005 Nano. Lett. 5 1569

    [6]

    Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567

    [7]

    Zhou J, Zhang X Y, Yonzon C R, Haes A J, Van Duyne R P 2006 Nanomedicine 1 219

    [8]

    Larsson E M, Alegret J, Kall M, Sutherland D S 2007 Nano. Lett. 7 1256

    [9]

    Haes A J, Hall W P, Chang L, Klein W L, Van Duyen R P 2004 Nano. Lett 4 1029

    [10]

    Zhou S, Honma HSI, Komiyama H 1994 Phys. Rev. B 50 12052

    [11]

    Nehi C L, Grady N K, Goodrich G P, Tam F, Halas N J, Hafner J H 2004 Nano. Lett. 4 2355

    [12]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [13]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 物理学报 57 5138]

    [14]

    Brandl D W, Oubre C, Nordlander P 2005 J. Chem. Phys. 123 024701

    [15]

    Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P, Halas N J 2008 Nano Lett. 8 1212

    [16]

    Khoury C G, Norton S J, Vo-Dinh T 2009 ACS Nano 3 2776

    [17]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [18]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444

    [19]

    Wu D J, Liu X J 2009 Appl. Phys. B 97 193

    [20]

    Nordlander P, Oubre C 2004 Nano. Lett. 4 899

    [21]

    Knight M W, Halas N J 2008 New J. Phys. 10 105006

    [22]

    Stratton J 1941 Electromagnetic Theory (New York: McGraw-Hill)

    [23]

    Grady N K, Halas N J, Nordlander P 2004 Chem. Phys. Lett. 399 167

    [24]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano. Lett. 9 887

    [25]

    Prodan E, Lee A, Nordlander P 2002 Chem. Phys. Lett. 360 325

  • [1] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联. 物理学报, 2021, 70(9): 097301. doi: 10.7498/aps.70.20210231
    [2] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [3] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [4] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [5] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [6] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [7] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [8] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [9] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [10] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [11] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究. 物理学报, 2012, 61(21): 214302. doi: 10.7498/aps.61.214302
    [12] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [13] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管近场增强特性的研究. 物理学报, 2012, 61(4): 047802. doi: 10.7498/aps.61.047802
    [14] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [15] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [16] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [17] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [18] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [19] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究. 物理学报, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  5381
  • PDF下载量:  2149
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-29
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

金纳米球壳对的局域表面等离激元共振特性分析

  • 1. 宁波大学理学院物理系, 宁波 315211
    基金项目: 国家自然科学基金(批准号: 60977048), 宁波市国际科技合作计划(批准号: 2010D10018), 浙江省重中之重学科开放基金(批准号: xkzl1012, xkzl1208), 浙江省研究生创新科研项目(YK2009046) 和宁波大学王宽成幸福基金资助的课题.

摘要: 应用有限元方法, 研究金纳米球壳对的几何结构参数及物理参量对其表面等离激元共振的散射及消光光谱的影响, 并根据等离激元杂化理论进行了理论分析. 结果表明, 随着金壳厚度的增加, 金纳米球壳对的散射及消光共振峰先发生蓝移而后红移, 而随着金纳米球壳间隙的减小, 或者随着金纳米球壳的内核尺寸或内核介质折射率的增大, 散射及消光共振峰均发生红移; 随着金壳厚度或内核尺寸减小, 或者随着内核介质折射率增大, 金纳米球壳对的散射与消光共振强度减弱, 而随着金壳间隙的减小, 金纳米球壳对的散射共振强度先增强后减弱, 而消光共振强度逐渐增强, 数值模拟与理论分析一致.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回