搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究

秦青松 马新龙 邵宇 杨星瑜 盛鸿飞 杨靖忠 尹瑶 张加驰

引用本文:
Citation:

新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究

秦青松, 马新龙, 邵宇, 杨星瑜, 盛鸿飞, 杨靖忠, 尹瑶, 张加驰

Synthesis and infrared up-conversion photostimulated luminescence properties of a novel optical storage material Sr2SnO4: Tb3 +, Li+

Qin Qing-Song, Ma Xin-Long, Shao Yu, Yang Xing-Yu, Sheng Hong-Fei, Yang Jing-Zhong, Yin Yao, Zhang Jia-Chi
PDF
导出引用
  • 采用高温固相法获得了一种只具有 微弱余辉的新型电子俘获型光存储材料Sr2SnO4:Tb3 +, Li +. 发光性能研究结果表明: 该材料对980 nm的红外激光具有很好的上转换光激励信息读出响应, 同时292 nm紫外光为其最佳信息写入光源. 光存储性能研究结果表明: 该材料的浅陷阱较少, 因此其余辉发光很弱, 不到500 s; 另一方面, 该材料中存在大量的深蓄能陷阱. 因此, Sr2SnO4: Tb3 +, Li+是一种具有较好实际应用价值的新型电子俘获型光存储材料. 此外, 还讨论了Sr2SnO4: Tb3 +, Li+的光存储发光机理.
    The novel electron trapping material of Sr2SnO4: Tb3+, Li+ for optical storage is synthesized by the solid state method. Stimulated by 980 nm infrared laser, the material shows intense up-conversion photostimulated luminescence. The ultraviolet light at 292 nm is an optimal writing source. The material has less shallow traps, which corresponds to its weak afterglow (less than 500 s). On the other hand, this material has lots of deep traps. Thus, the Sr2SnO4:Tb3 +, Li+ is a promising optical storage material. In addition, we propose the optical storage luminescence mechanism of Sr2SnO4:Tb3 +, Li +.
    • 基金项目: 国家自然科学青年基金(批准号: 10904057), 国家大学生创新性实验计划( 批准号: 101073005) 和中央高校科研业务费(批准号: Lzjbky-2011-125) 资助的课题.
    • Funds: Project supported by the National Nature Science Young Foundation of China (Grant No. 10904057), the National College of Innovative Pilot Scheme (Grant No. 101073005), and the Central Scientific Research Operating Expenses (Grant No. Lzjbky-2011-125).
    [1]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993

    [2]

    Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375

    [3]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502

    [4]

    Gong X, Chen W J 1998 Appl. Phys. Lett. 73 2875

    [5]

    Yamashita S A,Ogawa N 1989 Phys.Status. Solidi B 118 89

    [6]

    Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670

    [7]

    Kang C, Liu R, Chang J, Lee B 2003 Chem. Mater. 15 3966

    [8]

    Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491

    [9]

    Wang J X, Xie S S, Yuan H J, Yan X Q, Liu D F, Gao Y, Zhou Z P, Song L, Liu L F, Zhao X W, Dou X Y, Zhou W Y, Wang G 2004 Solid State Commun. 131 435

    [10]

    Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177

    [11]

    Zhang J C, Yu M H, Qin Q S 2010 J. Appl. Phys. 108 123518

    [12]

    Zhang J C, Wang Y H, Zhang Z Y, Xie P, Li H H, Jiang Y P 2008 Chin. Lett. 25 1453

    [13]

    Liao J S, Liu B, Lai H S 2009 J.Lumin. 129 668

    [14]

    Yu M, Lin J, Fu J, Zhang H J, Han Y C 2003 J.Mater.Chem. 13 1413

  • [1]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993

    [2]

    Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375

    [3]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502

    [4]

    Gong X, Chen W J 1998 Appl. Phys. Lett. 73 2875

    [5]

    Yamashita S A,Ogawa N 1989 Phys.Status. Solidi B 118 89

    [6]

    Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670

    [7]

    Kang C, Liu R, Chang J, Lee B 2003 Chem. Mater. 15 3966

    [8]

    Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491

    [9]

    Wang J X, Xie S S, Yuan H J, Yan X Q, Liu D F, Gao Y, Zhou Z P, Song L, Liu L F, Zhao X W, Dou X Y, Zhou W Y, Wang G 2004 Solid State Commun. 131 435

    [10]

    Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177

    [11]

    Zhang J C, Yu M H, Qin Q S 2010 J. Appl. Phys. 108 123518

    [12]

    Zhang J C, Wang Y H, Zhang Z Y, Xie P, Li H H, Jiang Y P 2008 Chin. Lett. 25 1453

    [13]

    Liao J S, Liu B, Lai H S 2009 J.Lumin. 129 668

    [14]

    Yu M, Lin J, Fu J, Zhang H J, Han Y C 2003 J.Mater.Chem. 13 1413

计量
  • 文章访问数:  3399
  • PDF下载量:  784
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-15
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究

  • 1. 兰州大学磁学与磁性材料教育部重点实验室, 兰州 730000
    基金项目: 

    国家自然科学青年基金(批准号: 10904057), 国家大学生创新性实验计划( 批准号: 101073005) 和中央高校科研业务费(批准号: Lzjbky-2011-125) 资助的课题.

摘要: 采用高温固相法获得了一种只具有 微弱余辉的新型电子俘获型光存储材料Sr2SnO4:Tb3 +, Li +. 发光性能研究结果表明: 该材料对980 nm的红外激光具有很好的上转换光激励信息读出响应, 同时292 nm紫外光为其最佳信息写入光源. 光存储性能研究结果表明: 该材料的浅陷阱较少, 因此其余辉发光很弱, 不到500 s; 另一方面, 该材料中存在大量的深蓄能陷阱. 因此, Sr2SnO4: Tb3 +, Li+是一种具有较好实际应用价值的新型电子俘获型光存储材料. 此外, 还讨论了Sr2SnO4: Tb3 +, Li+的光存储发光机理.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回