搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响

嘉明珍 王红艳 陈元正 马存良

引用本文:
Citation:

Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响

嘉明珍, 王红艳, 陈元正, 马存良

Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4

Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang
PDF
导出引用
  • 在锂二次电池中, 硅酸锰锂作为正极材料得到广泛研究, 但其固有的电子和离子电导率较低, 直接影响着电池的功率密度和充放电速率. 本文建立了不同浓度的Na+离子替位掺杂Li+离子形成的Li1-xNaxMnSiO4(x=0, 0.125, 0.25, 0.5)结构, 采用第一性原理的方法, 研究了掺杂前后硅酸锰锂的电子结构以及Li+离子的跃迁势垒. 发现在Li+位替代掺杂Na+, 导带底的能级向低能方向发生移动, 降低了Li2MnSiO4 材料的禁带宽度, 有利于提升材料的电子导电性能. 随着掺杂浓度的升高, 禁带宽度逐渐变窄. CI-NEB结果表明, 在Li2MnSiO4体系中具有两条有效的Li+离子迁移通道, 掺杂Na+以后扩大了Li+ 离子在[100]晶向上的迁移通道, Li+离子的跃迁势垒由0.64 eV降低为0.48, 0.52和0.55 eV. 掺杂浓度为 x=0.125时, 离子迁移效果最佳. 研究表明Na+掺杂有利于提高Li2MnSiO4材料的离子和电子电导率.
    With the developments of electric vehicles, the portable electronics and the large-scale storage systems, the research of the Li-ion rechargeable battery has focused on its high gravimetric and volumetric capacity. As a potential cathode, the Li2MnSiO4 structure has been intensively studied, in which two lithium ions of per formula unit (f.u.) can be extracted, and it exhibits a high theoretical capacity of about 330 mAh/g. However the low intrinsic electron conductivity and the slow lithium diffusion prevent its further development. In this paper, we build three structures with different Na+ doping concentrations in Pmn21 symmetric Li2MnSiO4, the electronic properties and Li+ ion diffusion behavior are studied by using the first principle and considering the transition barrier of the Mn-3d. Within the GGA+U scheme, the pure Li2MnSiO4 structure is semiconducting with a large band gap (3.28 eV), which is primarily derived from Mn-3d and O-2p states. Because lithium and sodium ions in the same main group have similar chemical properties, all the doped Li2-xNaxMnSiO4 (x= 0.125, 0.25, 0.5) are still semiconducting with the analogous densities of state (DOSs) to the pure Li2MnSiO4, however the band gaps reduce to 3.23 eV, 3.19 eV and 3.08 eV, respectively. Thus Na+ substitution can improve the electron conductivity. In Li2MnSiO4, the Li+ ions have two major diffusion channels predicted by the climbing image-nudged elastic band (CI-NEB) method. Channel A is along the a-direction [100], and channel B is in the bc plane with a zigzag trajectory. In the migration process, each of all the structures has only one migration pathway of Li ions. In the doped structures, the volumes of the crystal structures are increased by 1.40%, 2.65% and 5.25% for Li2-xNaxMnSiO4 (x= 0.125, 0.25, 0.5), and thus enlarge the hopping distances. Along channel A, the longer Li-O bond makes the ionic diffusion channel wider, therefore Li2-xNaxMnSiO4 (x= 0.125, 0.25, 0.5) have lower activation barriers of 0.48, 0.52 and 0.55 eV than the pure Li2MnSiO4 (0.64 eV). However, in channel B, the strong Li-O bonds increase the activation barriers of Li ion migration. When the doping concentration is x=0.125, the Li+ ion migration effect is strongest. For the Li+ ion migration pathways, it is easier for Li ion to hop into the site near Na ion. It means that the crystal structures are stabler at the short Li-O bond site. Therefore, doping Na+ ions would be a feasible method to improve the electron conductivity and Li+ ion migration rate in Li2MnSiO4 of Pmn21 phase.
      通信作者: 王红艳, hongyanw@home.swjtu.edu.cn;cyz@calypso.org.cn ; 陈元正, hongyanw@home.swjtu.edu.cn;cyz@calypso.org.cn
    • 基金项目: 国家自然科学基金(批准号: 11174237, 11404268)、四川省应用基础项目(批准号: 2013JY0035) 和中央高校基本科研业务费(批准号: 2682014ZT30, 2682015QM04)资助的课题.
      Corresponding author: Wang Hong-Yan, hongyanw@home.swjtu.edu.cn;cyz@calypso.org.cn ; Chen Yuan-Zheng, hongyanw@home.swjtu.edu.cn;cyz@calypso.org.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174237, 11404268), the Applied Science and Technology Project of Sichuan Province, China (Grant No. 2013JY0035), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2682014ZT30, 2682015QM04).
    [1]

    Nagaura T, Tozawa K 1990 Prog. Batteries Sol. Cells 9 209

    [2]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [3]

    Gummow R J, He Y 2014 J. Power Sources 253 315

    [4]

    Guo Z F, Pan K, Wang X J 2016 Chin. Phys. B 25 017801

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [7]

    Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J 2007 J. Power Sources 174 457

    [8]

    Ellis B, Kan W H, Makahnouk W R M, Nazar L F 2007 J. Mater. Chem. 17 3248

    [9]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [10]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [11]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [12]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [13]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [14]

    Ong S P, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X H, Ceder G 2011 Energy Environ. Sci. 4 3680

    [15]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 T. Nonferr. Metal. Soc. 19 182

    [16]

    Zhang P, Li X D, Yu S, Wu S Q, Zhu Z Z, Yang Y 2013 J. Electrochem. Soc. 160 A658

    [17]

    Wang M, Yang M, Ma L Q Shen X D 2015 Chem. Phys. Lett. 619 39

    [18]

    Duncan H, Kondamreddy A, Mercier P H J, Page Y L, Abu-Lebdeh Y, Couillard M, Whitfield P S, Davidson I J 2011 Chem. Mater. 23 5446

    [19]

    Zhang P, Xu Y X, Zheng F, Wu S Q, Yang Y, Zhu Z Z 2015 Cryst. Eng. Comm. 17 2123

    [20]

    Fisher C A J, Kuganathan N, Islam M S 2013 J. Mater. Chem. A 1 4207

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Henkelman G, Uberuaga B P, J nsson H 2000 J. Chem. Phys. 113 9901

    [26]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [27]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [28]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comp. Mater. Sci. 44 1243

  • [1]

    Nagaura T, Tozawa K 1990 Prog. Batteries Sol. Cells 9 209

    [2]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [3]

    Gummow R J, He Y 2014 J. Power Sources 253 315

    [4]

    Guo Z F, Pan K, Wang X J 2016 Chin. Phys. B 25 017801

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [7]

    Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J 2007 J. Power Sources 174 457

    [8]

    Ellis B, Kan W H, Makahnouk W R M, Nazar L F 2007 J. Mater. Chem. 17 3248

    [9]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [10]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [11]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [12]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [13]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [14]

    Ong S P, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X H, Ceder G 2011 Energy Environ. Sci. 4 3680

    [15]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 T. Nonferr. Metal. Soc. 19 182

    [16]

    Zhang P, Li X D, Yu S, Wu S Q, Zhu Z Z, Yang Y 2013 J. Electrochem. Soc. 160 A658

    [17]

    Wang M, Yang M, Ma L Q Shen X D 2015 Chem. Phys. Lett. 619 39

    [18]

    Duncan H, Kondamreddy A, Mercier P H J, Page Y L, Abu-Lebdeh Y, Couillard M, Whitfield P S, Davidson I J 2011 Chem. Mater. 23 5446

    [19]

    Zhang P, Xu Y X, Zheng F, Wu S Q, Yang Y, Zhu Z Z 2015 Cryst. Eng. Comm. 17 2123

    [20]

    Fisher C A J, Kuganathan N, Islam M S 2013 J. Mater. Chem. A 1 4207

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Henkelman G, Uberuaga B P, J nsson H 2000 J. Chem. Phys. 113 9901

    [26]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [27]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [28]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comp. Mater. Sci. 44 1243

  • [1] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [7] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [8] 彭颖吒, 李泳, 郑百林, 张锴, 徐咏川. 考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析. 物理学报, 2018, 67(7): 070203. doi: 10.7498/aps.67.20172288
    [9] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [10] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [11] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [12] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [13] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  4905
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-04
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-03-05

/

返回文章
返回