搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制

曾建邦 郭雪莹 刘立超 沈祖英 单丰武 罗玉峰

引用本文:
Citation:

基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制

曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰

Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model

Zeng Jian-Bang, Guo Xue-Ying, Liu Li-Chao, Shen Zu-Ying, Shan Feng-Wu, Luo Yu-Feng
PDF
导出引用
  • 隔膜孔隙结构对锂离子电池性能具有重要的影响,本文提出了可准确描述充放电过程中锂离子电池内部复杂物理化学现象的电化学-热耦合模型,发现该模型较文献中模型的计算结果更接近实验测试数据.利用该模型探讨了隔膜孔隙率与扭曲率分别对锂离子电池性能的影响规律,发现减小孔隙率或增大扭曲率,电池输出电压、最大放电容量和平均输出功率均不断降低,电池表面温度和温升速度均不断升高;当孔隙率减小或扭曲率增大到一定程度时,放电初期电池输出电压均会出现先下降后回升的现象,且孔隙率越小或扭曲率越大,其下降的幅度越大、速度越快,回升所需时间也越长;要确保其不低于截止电压,隔膜扭曲率必须小于临界扭曲率(其下降至最低点刚好等于截止电压时的隔膜扭曲率).综合分析了放电过程中电池内部各电化学参量和产热量的动态分布规律,发现隔膜孔隙率和扭曲率主要影响放电末期电极膜片内部电化学反应以及其他放电时刻电解液中有效Li+扩散(传导)系数.
    Separator is an important component of lithium-ion battery,and the microstructure of separator has an important influence on the performance of lithium-ion battery.In the present paper,an electrochemical-thermal full coupling model is developed to accurately describe the complex physicalchemical phenomena in lithium-ion battery in charge and discharge process.The simulation results by the present model are closer to the experimental results than those by the previously published model.What is more,the present model is widely used to investigate the effects of the separator porosity and tortuosity on the performance of lithium-ion battery,respectively.The simulation results show that with separator porosity decreasing or separator tortuosity increasing,the output voltage,maximum discharge capacity and average output power of lithium-ion battery decrease,and the lithium-ion battery surface temperature and its rising rate increase.In the initial stage of discharge,when the separator porosity decreases or separator tortuosity increases to a certain degree,the output voltage of lithium-ion battery first decreases and then increases.The smaller the separator porosity or the higher the separator tortuosity,the larger the range and rate of reducing the output voltage of lithium-ion battery become and the longer the rise time needs in the initial stage of discharge.To ensure that the output voltage of lithium-ion battery is higher than the cut-off voltage,the separator tortuosity must be less than the critical tortuosity (It is equal to the separator tortuosity of the lithium-ion battery with the lowest output voltage,which is just equal to the cut-off voltage in the initial stage of discharge).Finally,a comprehensive analysis is conducted on the dynamic distribution of the electrochemical parameters and various heat productions in lithium-ion battery during charge and discharge.It can be clearly found that the electrochemical reactions in the end of discharge,the diffusion coefficients and the conduction coefficients of Li+ of electrolyte in the initial and middle stage of discharge are mainly influenced by the separator porosity and tortuosity.The research results in the present paper not only provide theoretical and technical support for the separator microstructure design and optimization,but also has important realistic meanings for improving or perfecting the preparation technology of the separator.
    [1]

    Pan R J, Wang Z H, Sun R, Lindh J, Edstrom K, Strømme M, Nyholm L 2017 Cellulose 24 2903

    [2]

    Deimede V, Elmasides C 2015 Energy Technol. 3 453

    [3]

    Venugopal G, Moore J, Howard J, Pendalwar S 1999 J. Power Sources 77 34

    [4]

    Djian D, Alloin F, Martinet S, Lignier H, Sanchez J Y 2007 J. Power Sources 172 416

    [5]

    Costa C M, Rodrigues L C, Sencadas V, Silva M M, Rocha J G, Lanceros-Méndez S 2012 J. Membrane Sci. 407–408 193

    [6]

    Plaimer M, Breitfuß C, Sinz W, Heindl S F, Ellersdorfer C, Steffan H, Wilkening M, Hennige V, Taschl R, Geier A, Schramm C, Freunberger S A 2016 J. Power Sources 306 702

    [7]

    Lee Y J, Park J, Jeon H, Yeon D, Kim B H, Cho K Y, Ryou M H, Lee Y M 2016 J. Power Sources 325 732

    [8]

    Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R 2012 J. Electrochem. Soc. 159 R31

    [9]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [10]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [11]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [12]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [13]

    Appiah W A, Park J, Song S, Byun S, Ryou M H, Lee Y M 2016 J. Power Sources 319 147

    [14]

    De S, Northrop P W C, Ramadesigan V, Subramanian V R 2013 J. Power Sources 227 161

    [15]

    Golmon S, Maute K, Dunn M L 2012 Int. J. Numer. Meth. Eng. 92 475

    [16]

    Golmon S, Maute K, Dunn M L 2014 J. Power Sources 253 239

    [17]

    Miranda D, Costa C M, Almeida A M, Lanceros-Méndez S 2015 Solid State Ionics 278 78

    [18]

    Xue N S, Du W B, Gupta A, Shyy W, Sastry A M, Martins J R R A 2013 J. Electrochem. Soc. 160 A1071

    [19]

    Liu C H, Liu L 2017 J. Electrochem. Soc. 164 E3254

    [20]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [21]

    Ye Y H, Shi Y X, Cai N S, Lee J J, He X M 2012 J. Power Sources 199 227

    [22]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543

    [23]

    Kuzminskii Y V, Nyrkova L I, Andriiko A A 1993 J. Power Sources 46 29

    [24]

    Peng P, Jiang F M 2016 Int. J. Heat Mass Tran. 103 1008

    [25]

    Bang H, Yang H, Sun Y K, Prakash J 2005 J. Electrochem. Soc. 152 A421

    [26]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [27]

    Zeng J B, Wu W, Jiang F M 2014 Solid State Ionics 260 76

    [28]

    He S Y, Zeng J B, Bereket T H, Jiang F M 2016 Sci. Bull. 61 656

    [29]

    Tye F L 1983 J. Power Sources 9 89

    [30]

    Tjaden B, Brett D J L, Shearing P R 2018 Int. Mater. Rev. 63 47

    [31]

    Valøen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [32]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [33]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [34]

    Miao Y K, Liu H F, Liu Q H, Li S Y 2016 Sci. Rep. 6 32639

  • [1]

    Pan R J, Wang Z H, Sun R, Lindh J, Edstrom K, Strømme M, Nyholm L 2017 Cellulose 24 2903

    [2]

    Deimede V, Elmasides C 2015 Energy Technol. 3 453

    [3]

    Venugopal G, Moore J, Howard J, Pendalwar S 1999 J. Power Sources 77 34

    [4]

    Djian D, Alloin F, Martinet S, Lignier H, Sanchez J Y 2007 J. Power Sources 172 416

    [5]

    Costa C M, Rodrigues L C, Sencadas V, Silva M M, Rocha J G, Lanceros-Méndez S 2012 J. Membrane Sci. 407–408 193

    [6]

    Plaimer M, Breitfuß C, Sinz W, Heindl S F, Ellersdorfer C, Steffan H, Wilkening M, Hennige V, Taschl R, Geier A, Schramm C, Freunberger S A 2016 J. Power Sources 306 702

    [7]

    Lee Y J, Park J, Jeon H, Yeon D, Kim B H, Cho K Y, Ryou M H, Lee Y M 2016 J. Power Sources 325 732

    [8]

    Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R 2012 J. Electrochem. Soc. 159 R31

    [9]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [10]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [11]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [12]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [13]

    Appiah W A, Park J, Song S, Byun S, Ryou M H, Lee Y M 2016 J. Power Sources 319 147

    [14]

    De S, Northrop P W C, Ramadesigan V, Subramanian V R 2013 J. Power Sources 227 161

    [15]

    Golmon S, Maute K, Dunn M L 2012 Int. J. Numer. Meth. Eng. 92 475

    [16]

    Golmon S, Maute K, Dunn M L 2014 J. Power Sources 253 239

    [17]

    Miranda D, Costa C M, Almeida A M, Lanceros-Méndez S 2015 Solid State Ionics 278 78

    [18]

    Xue N S, Du W B, Gupta A, Shyy W, Sastry A M, Martins J R R A 2013 J. Electrochem. Soc. 160 A1071

    [19]

    Liu C H, Liu L 2017 J. Electrochem. Soc. 164 E3254

    [20]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [21]

    Ye Y H, Shi Y X, Cai N S, Lee J J, He X M 2012 J. Power Sources 199 227

    [22]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543

    [23]

    Kuzminskii Y V, Nyrkova L I, Andriiko A A 1993 J. Power Sources 46 29

    [24]

    Peng P, Jiang F M 2016 Int. J. Heat Mass Tran. 103 1008

    [25]

    Bang H, Yang H, Sun Y K, Prakash J 2005 J. Electrochem. Soc. 152 A421

    [26]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [27]

    Zeng J B, Wu W, Jiang F M 2014 Solid State Ionics 260 76

    [28]

    He S Y, Zeng J B, Bereket T H, Jiang F M 2016 Sci. Bull. 61 656

    [29]

    Tye F L 1983 J. Power Sources 9 89

    [30]

    Tjaden B, Brett D J L, Shearing P R 2018 Int. Mater. Rev. 63 47

    [31]

    Valøen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [32]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [33]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [34]

    Miao Y K, Liu H F, Liu Q H, Li S Y 2016 Sci. Rep. 6 32639

  • [1] 张凯, 徐鹏, 关学锋, 杜玉群, 王轲杰, 陆勇俊. 力学约束对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241275
    [2] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [3] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [5] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [7] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [8] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测. 物理学报, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [9] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [10] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [11] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [13] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [14] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [15] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [17] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [18] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  8431
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-10-24
  • 刊出日期:  2019-01-05

/

返回文章
返回