搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声增强藻酸钙凝胶支架材料孔隙率的研究

卢璐 吉鸿飞 郭各朴 郭霞生 屠娟 邱媛媛 章东

引用本文:
Citation:

超声增强藻酸钙凝胶支架材料孔隙率的研究

卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东

Ultrasonic enhancement of the porosity of alginate scaffold

Lu Lu, Ji Hong-Fei, Guo Ge-Pu, Guo Xia-Sheng, Tu Juan, Qiu Yuan-Yuan, Zhang Dong
PDF
导出引用
  • 藻酸钙凝胶具有三维立体多孔结构, 能为细胞生长提供充分的附着空间, 且具有良好的生物相容性和一定的机械强度, 是一种理想的细胞支架材料. 本文研究了藻酸钙三维支架材料的力学特性与氯化钙/藻酸钠的配比的关系, 并提出采用低强度脉冲超声处理藻酸钙凝胶、基于超声空化效应增强藻酸钙凝胶孔隙率的新方法. 实验采用交联合成方法制备藻酸钙凝胶支架材料, 测量力学特性、孔洞的联通性与孔隙率, 并利用绿色荧光蛋白的表达评价细胞的增殖能力. 结果表明, 当氯化钙/藻酸钠的配比为3:5时, 凝胶的机械强度和弹性较好, 力学性能稳定, 为最佳配比参数. 采用声压0.055 MPa的脉冲超声作用20 min, 可以有效提高凝胶支架的孔隙率; 且细胞在该支架中生长状态良好, 呈现团簇状生长趋势.
    Alginate scaffold with a three-dimensional (3D) porous structure can provide sufficient space for the cell to adhere, and has a good biocompatibility and mechanical strength. In this work, low-intensity pulsed ultrasound (LIPUS) is used to enhance the porosity of alginate scaffold based on acoustic cavitation. In the experiment, the alginate-calcium-based 3D scaffold culture system is fabricated with an optimum CaCl2/sodium alginate ratio of 3:5. The mechanical properties of alginate scaffold are measured and scanning electron microscopy is used to analyze the porosity of the scaffold. In addition, the microscopy observation of green fluorescent protein expression and the CCk-8 assessment are adapted to analyze the cell proliferation effect. Experimental results show that with LIPUS treatment under appropriate driving parameters (acoustic pressure 0.055 MPa and treatment time 20 min), the porosity of the 3D scaffold can be significantly improved, which would benefit the cell growth in the scaffold.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB707900)、国家自然科学基金(批准号: 81127901, 81227004, 81473692, 11374155, 11174141, 11104140, 11204144, 11274170, 11474001, 11474161)和江苏省自然科学基金(批准号: BE2011110, BK2012226)资助的课题.
    • Funds: Projects supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 81473692, 11374155, 11174141, 11104140, 11204144, 11274170, 11474001, 11474161), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BE2011110, BK2012226).
    [1]

    Chen J, Irianto J, Inamdar S, Pravincumar P, Lee D A, Bader D L, Knight M M 2012 Biophys. J. 103 1188

    [2]

    Caron M M J, Emans P J, Coolsen M M E, Voss L, Surtel D A M, Cremers A, van Rhijn L W, Welting T J M 2012 Osteoarthritis Cartilage 20 1170

    [3]

    Avitabile T, Marano F, Castiglinone F 2001 Biomaterials 22 195

    [4]

    Karande T S, Ong J L, Agrawal C M 2004 Ann. Biomed. Eng. 32 1728

    [5]

    Guo G P, Ma Q Y, Zhao B, Zhang D 2013 Ultrason. Sonochem. 20 137

    [6]

    Guo Y, Ma Y, Dong R, Liu S L, Tu J 2013 Chin. J. Reparative and Reconstructive Surgery 27 928 (in Chinese) [郭杨, 马勇, 董睿, 刘尚仑, 屠娟 2013 中国修复重建外科杂志27 928]

    [7]

    Wang X X, Li W, Kumar V 2006 Biomaterials 27 1924

    [8]

    Chen Q, Zou X Y, Cheng J C 2006 Acta Phys. Sin. 55 6476 (in Chinese) [陈谦, 邹欣晔, 程建春 2006 物理学报 55 6476]

    [9]

    Li J L, Liu X Z, Zhang D, Gong X F 2006 Acta Phys. Sin. 55 2809 (in Chinese) [李俊伦, 刘晓宙, 章东, 龚秀芬 2006 物理学报 55 2809]

    [10]

    Xue H H, Liu X Z, Gong X F, Zhang D 2005 Acta Phys. Sin. 54 5233 (in Chinese) [薛洪惠, 刘晓宙, 龚秀芬, 章东 2005 物理学报 54 5233]

    [11]

    Zhang C B, Liu Z, Guo X S, Zhang D 2011 Chin. Phys. B 20 024301

    [12]

    Schinagl R M, Gurskis D, Chen A C 1997 J. Orthop. Res. 15 499

    [13]

    Li K F, Guo L K, Yu F J, Zhang X D 2012 Chin. J. Reparative and Reconstructive Surgery 26 11

    [14]

    Oliveira S M, Ringshia R A, LeGeros R Z, Clark E, Yost M J, Terracio L, Teixeira C C 2010 J. Biomed. Mater. Res. A 94 371

    [15]

    Shui W, Yin L, Luo J, Zhang W, Zhang J, Huang W, Hu N, Liang X, Deng Z L, Hu Z Shi L L, Luu H H, Haydon R C, He T C, Ho S H 2013 J. Biomed. Mater. Res. A 191A 3542

    [16]

    Raimondi M T, Boschetti F, Falcone L, Fiore G B, Remuzzi A, Marinoni E, Marazzi M, Pietrabissa R 2002 Biomech. Model. Mechanobiol. 1 69

    [17]

    Xu Q, Nakajima M, Ichikawa S, Nakamura N, Shiina T 2008 Food Sci. Emerg. Technol. 9 489

    [18]

    Wu J R 2007 Prog. Biophys. Mol. Biol. 93 363

    [19]

    Huang B, Zhang Y L, Zhang D, Gong X F 2010 Chin. Phys. B 19 054302

  • [1]

    Chen J, Irianto J, Inamdar S, Pravincumar P, Lee D A, Bader D L, Knight M M 2012 Biophys. J. 103 1188

    [2]

    Caron M M J, Emans P J, Coolsen M M E, Voss L, Surtel D A M, Cremers A, van Rhijn L W, Welting T J M 2012 Osteoarthritis Cartilage 20 1170

    [3]

    Avitabile T, Marano F, Castiglinone F 2001 Biomaterials 22 195

    [4]

    Karande T S, Ong J L, Agrawal C M 2004 Ann. Biomed. Eng. 32 1728

    [5]

    Guo G P, Ma Q Y, Zhao B, Zhang D 2013 Ultrason. Sonochem. 20 137

    [6]

    Guo Y, Ma Y, Dong R, Liu S L, Tu J 2013 Chin. J. Reparative and Reconstructive Surgery 27 928 (in Chinese) [郭杨, 马勇, 董睿, 刘尚仑, 屠娟 2013 中国修复重建外科杂志27 928]

    [7]

    Wang X X, Li W, Kumar V 2006 Biomaterials 27 1924

    [8]

    Chen Q, Zou X Y, Cheng J C 2006 Acta Phys. Sin. 55 6476 (in Chinese) [陈谦, 邹欣晔, 程建春 2006 物理学报 55 6476]

    [9]

    Li J L, Liu X Z, Zhang D, Gong X F 2006 Acta Phys. Sin. 55 2809 (in Chinese) [李俊伦, 刘晓宙, 章东, 龚秀芬 2006 物理学报 55 2809]

    [10]

    Xue H H, Liu X Z, Gong X F, Zhang D 2005 Acta Phys. Sin. 54 5233 (in Chinese) [薛洪惠, 刘晓宙, 龚秀芬, 章东 2005 物理学报 54 5233]

    [11]

    Zhang C B, Liu Z, Guo X S, Zhang D 2011 Chin. Phys. B 20 024301

    [12]

    Schinagl R M, Gurskis D, Chen A C 1997 J. Orthop. Res. 15 499

    [13]

    Li K F, Guo L K, Yu F J, Zhang X D 2012 Chin. J. Reparative and Reconstructive Surgery 26 11

    [14]

    Oliveira S M, Ringshia R A, LeGeros R Z, Clark E, Yost M J, Terracio L, Teixeira C C 2010 J. Biomed. Mater. Res. A 94 371

    [15]

    Shui W, Yin L, Luo J, Zhang W, Zhang J, Huang W, Hu N, Liang X, Deng Z L, Hu Z Shi L L, Luu H H, Haydon R C, He T C, Ho S H 2013 J. Biomed. Mater. Res. A 191A 3542

    [16]

    Raimondi M T, Boschetti F, Falcone L, Fiore G B, Remuzzi A, Marinoni E, Marazzi M, Pietrabissa R 2002 Biomech. Model. Mechanobiol. 1 69

    [17]

    Xu Q, Nakajima M, Ichikawa S, Nakamura N, Shiina T 2008 Food Sci. Emerg. Technol. 9 489

    [18]

    Wu J R 2007 Prog. Biophys. Mol. Biol. 93 363

    [19]

    Huang B, Zhang Y L, Zhang D, Gong X F 2010 Chin. Phys. B 19 054302

  • [1] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220558
    [2] 王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成. 基于超声波声压衰减效应的局部放电源定位与强度标定. 物理学报, 2021, 70(9): 095209. doi: 10.7498/aps.70.20201727
    [3] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [4] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [7] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [8] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [9] 李乐, 李克非. 含随机裂纹网络孔隙材料渗透率的逾渗模型研究. 物理学报, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [10] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [11] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [12] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [13] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [14] 孙鹏, 胡明, 刘博, 孙凤云, 许路加. 金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性. 物理学报, 2011, 60(5): 057303. doi: 10.7498/aps.60.057303
    [15] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [16] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [17] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [18] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [20] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
计量
  • 文章访问数:  3193
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-17
  • 修回日期:  2014-07-24
  • 刊出日期:  2015-01-05

超声增强藻酸钙凝胶支架材料孔隙率的研究

  • 1. 南京大学声学研究所, 近代声学教育部重点实验室, 南京 210093;
  • 2. 南通大学电子信息学院, 南通 226019;
  • 3. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100080
    基金项目: 国家重点基础研究发展计划(批准号: 2011CB707900)、国家自然科学基金(批准号: 81127901, 81227004, 81473692, 11374155, 11174141, 11104140, 11204144, 11274170, 11474001, 11474161)和江苏省自然科学基金(批准号: BE2011110, BK2012226)资助的课题.

摘要: 藻酸钙凝胶具有三维立体多孔结构, 能为细胞生长提供充分的附着空间, 且具有良好的生物相容性和一定的机械强度, 是一种理想的细胞支架材料. 本文研究了藻酸钙三维支架材料的力学特性与氯化钙/藻酸钠的配比的关系, 并提出采用低强度脉冲超声处理藻酸钙凝胶、基于超声空化效应增强藻酸钙凝胶孔隙率的新方法. 实验采用交联合成方法制备藻酸钙凝胶支架材料, 测量力学特性、孔洞的联通性与孔隙率, 并利用绿色荧光蛋白的表达评价细胞的增殖能力. 结果表明, 当氯化钙/藻酸钠的配比为3:5时, 凝胶的机械强度和弹性较好, 力学性能稳定, 为最佳配比参数. 采用声压0.055 MPa的脉冲超声作用20 min, 可以有效提高凝胶支架的孔隙率; 且细胞在该支架中生长状态良好, 呈现团簇状生长趋势.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回