搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能超声制备碳纳米管增强AZ91D复合材料的声场模拟

赵福泽 朱绍珍 冯小辉 杨院生

引用本文:
Citation:

高能超声制备碳纳米管增强AZ91D复合材料的声场模拟

赵福泽, 朱绍珍, 冯小辉, 杨院生

Sound field simulation of ultrasonic processing to fabricate carbon nanotubes reinforced AZ91D composites

Zhao Fu-Ze, Zhu Shao-Zhen, Feng Xiao-Hui, Yang Yuan-Sheng
PDF
导出引用
  • 建立了高能超声制备碳纳米管增强AZ91D复合材料的声场计算模型, 并采用有限元方法计算了20 kHz超声直接作用下AZ91D熔体的声场分布, 熔体声场呈辐射状分布, 距离声源越远, 声压幅值越低. 采用超声作用下单一气泡变化模型描述超声作用下AZ91D 熔体中的空化效应, 通过对Rayleigh-Plesset方程的求解, 得到了不同声压作用下气泡的变化规律, 获得了声压幅值与熔体空化效应的关系, 声压幅值越大, 气泡溃灭半径阈值越小, 熔体发生空化效应越容易. 计算了固定坩埚尺寸、不同超声探头没入熔体深度情况下的声场, 得到了超声探头最优没入深度为30 mm左右. 将声场计算结果以及AZ91D熔体中空化效应的发生规律进行综合分析, 得到了超声功率对有效空化区域的影响规律, 超声功率较大时, 有效空化区域体积随超声功率近似成线性增大. 最后, 通过甘油水溶液超声处理实验, 验证了模拟计算的准确性.
    The sound field in the melt processed by 20 kHz ultrasonic to fabricate CNT-AZ91D is investigated by numerical simulation. Firstly, the distribution of sound pressure in the AZ91D melt is calculated by the finite element method after the model of the sound filed of the ultrasonic processing has been built. The simulation results show that a radial sound field forms under the ultrasonic probe, which means that the sound pressure decreases with increasing distance from the sound source. After the sound field is revealed, we study the ultrasonic cavitation in the AZ91D melt with a single-bubbly-change model and examine the bubble change rule under different sound pressures by solving the Rayleigh-Plesset equation. The relationship between sound pressure amplitude and the ultrasonic cavitation in the melt is also discovered. The higher the sound pressure amplitude, the smaller the threshold radius for the bubble collapse is, and thus the ultrasonic cavitation in AZ91 melt happens more easily. Secondly, the sound fields of the melt with different immersed depths of the ultrasonic probe are calculated. The results show the optimal immersed depth is about 30 mm for the same crucible size used in the present study. Furthermore, the corresponding optimal immersed depth can be calculated for different crucible sizes or different melts by the present numerical method, which is important for the practical ultrasonic processing. After analyzing the calculated results for sound field and the cavitation rule of in the AZ91D synthetically, we find that the volume of the effective cavitation zone rapidly increases with the smaller ultrasonic power and then rises almost linearly with the ultrasonic power larger than 500 W. Finally, to verify the simulation method of the sound field, the contrast study between the simulation and experiment of ultrasonic processing using glycerol-water solution is performed. The simulation result of the sound field in glycerol-water solution is similar to that in AZ91D melt. The highest sound pressure occurs near the end face of ultrasonic probe, while the experimental observation shows that the strongest cavitation also happens near the end face of ultrasonic probe, which indicates that the highest sound pressure occurs in the zone.
    • 基金项目: 国家自然科学基金(批准号: 51274184)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51274184).
    [1]

    Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R O 2002 Mat. Sci. Eng. A: Struct. 334 173

    [2]

    Paramsothy M, Chan J, Kwok R, Gupta M 2011 Compos. Part. A: Appl. S. 42 180

    [3]

    Paramsothy M, Tan X H, Chan J, Kwok R, Gupta M 2013 Mater. Design 45 15

    [4]

    Carreño-Morelli E, Yang J, Coutrau E, Hernadi K, Seo J W, Bonjour C, Forró L, Schaller R 2004 Phys. Status Solidi A 201 R53

    [5]

    Shimizu Y, Miki S, Itoh I, Todoroki H, Hosono T, Sakaki K, Hayashi T, Kim Y A, Endo M, Morimoto S, Koide A 2008 Scripta Mater. 58 267

    [6]

    Lan J, Yang Y, Li X C 2004 Mat. Sci. Eng. A: Struct. 386 284

    [7]

    Liu S Y, Gao F P, Zhang Q Y, Zhu X, Li W Z 2010 Trans. Nonferr. Metal. Soc. 20 1222

    [8]

    Li C D, Wang X J, Liu W Q, Wu K, Shi H L, Ding C, Hu X S, Zheng M Y 2014 Mat. Sci. Eng. A: Struct. 597 264

    [9]

    Li C D, Wang X J, Liu W Q, Shi H L, Ding C, Hu X S, Zheng M Y, Wu K 2014 Mater. Design 58 204

    [10]

    Tudela I, Sáez V, Esclapez M D, Díez-García M I, Bonete P, González-García J 2014 Ultrason. Sonochem. 21 909

    [11]

    Saez V, Frcas-Ferrer A, Iniesta J, González-García J, Aldaz Z, Riera E 2005 Ultrason. Sonochem. 12 59

    [12]

    Klíma J, Frias-Ferrer A, González-García J, Ludvík J, Sáez V, Iniesta J 2007 Ultrason. Sonochem. 14 19

    [13]

    Shao Z W, Le Q C, Cui J Z, Zhang Z Q 2010 Trans. Nonferr. Metal. Soc. 20 s382

    [14]

    Shao Z W, Le Q C, Zhang Z Q, Cui J Z 2011 Trans. Nonferr. Metal. Soc. 21 2476

    [15]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [16]

    Daemi M, Taeibi-Rahni M, Massah H 2015 Chin. Phys. B 24 024302

    [17]

    Blairs S 2006 J. Colloid. Interf. Sci. 302 312

    [18]

    Takamichi I D, Roderick I L G (translated by Xian A P, Wang L W) 2005 The Physical Properties of Liquid Metals (Beijing: Science Press) pp50-74 (in Chinese) [Takamichi I D, Roderick I L G著, 冼爱平, 王连文 译 2005 液态金属的物理性能(北京: 科学出版社)第50-74页]

    [19]

    Keene B J 1993 Int. Mater. Rev. 38 157

    [20]

    Lighthill J 2010 Waves in Fluids Reprint (Beijing: Beijing World Publishing Corporation) pp11-17

    [21]

    Rienstra S W, Hirschberg A 2014 An Introduction to Acoustics (Eindhoven: Eindhoven University of Technology) pp65-67

    [22]

    Babuška I, Ihlenburg F, Paik E T, Sauter S A 1995 Comput. Method Appl. M. 128 325

    [23]

    Ihlenburg F, Babuška I 1995 Comput. Math. Appl. 30 9

    [24]

    Noltingk B E, Neppiras E A

    [25]

    Hilgenfeldt S, Brenner M P, Grossmann S, Lohse Detlef 1998 J. Fluid Mech. 365 171

    [26]

    Du G H, Zhu Z M, Xi X F 2012 Fundamentals of acoustics (the third edition) (Nanjing: Nanjing University Press) pp223-230 (in Chinese) [杜功焕, 朱哲民, 袭秀芳 2012 声学基础 (第三版) (南京: 南京大学出版社)第223-230页]

    [27]

    Zhang H W, Li Y X 2007 Acta Phy. Sin. 56 4864 (in Chinese) [张华伟, 李言祥 2007 物理学报 56 4864]

    [28]

    Glycerine Producers' Association 1963 Physical Properties of Glycerine and Its Solutions (Glycerine: Glycerine Producers' Association) pp3-24

  • [1]

    Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R O 2002 Mat. Sci. Eng. A: Struct. 334 173

    [2]

    Paramsothy M, Chan J, Kwok R, Gupta M 2011 Compos. Part. A: Appl. S. 42 180

    [3]

    Paramsothy M, Tan X H, Chan J, Kwok R, Gupta M 2013 Mater. Design 45 15

    [4]

    Carreño-Morelli E, Yang J, Coutrau E, Hernadi K, Seo J W, Bonjour C, Forró L, Schaller R 2004 Phys. Status Solidi A 201 R53

    [5]

    Shimizu Y, Miki S, Itoh I, Todoroki H, Hosono T, Sakaki K, Hayashi T, Kim Y A, Endo M, Morimoto S, Koide A 2008 Scripta Mater. 58 267

    [6]

    Lan J, Yang Y, Li X C 2004 Mat. Sci. Eng. A: Struct. 386 284

    [7]

    Liu S Y, Gao F P, Zhang Q Y, Zhu X, Li W Z 2010 Trans. Nonferr. Metal. Soc. 20 1222

    [8]

    Li C D, Wang X J, Liu W Q, Wu K, Shi H L, Ding C, Hu X S, Zheng M Y 2014 Mat. Sci. Eng. A: Struct. 597 264

    [9]

    Li C D, Wang X J, Liu W Q, Shi H L, Ding C, Hu X S, Zheng M Y, Wu K 2014 Mater. Design 58 204

    [10]

    Tudela I, Sáez V, Esclapez M D, Díez-García M I, Bonete P, González-García J 2014 Ultrason. Sonochem. 21 909

    [11]

    Saez V, Frcas-Ferrer A, Iniesta J, González-García J, Aldaz Z, Riera E 2005 Ultrason. Sonochem. 12 59

    [12]

    Klíma J, Frias-Ferrer A, González-García J, Ludvík J, Sáez V, Iniesta J 2007 Ultrason. Sonochem. 14 19

    [13]

    Shao Z W, Le Q C, Cui J Z, Zhang Z Q 2010 Trans. Nonferr. Metal. Soc. 20 s382

    [14]

    Shao Z W, Le Q C, Zhang Z Q, Cui J Z 2011 Trans. Nonferr. Metal. Soc. 21 2476

    [15]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [16]

    Daemi M, Taeibi-Rahni M, Massah H 2015 Chin. Phys. B 24 024302

    [17]

    Blairs S 2006 J. Colloid. Interf. Sci. 302 312

    [18]

    Takamichi I D, Roderick I L G (translated by Xian A P, Wang L W) 2005 The Physical Properties of Liquid Metals (Beijing: Science Press) pp50-74 (in Chinese) [Takamichi I D, Roderick I L G著, 冼爱平, 王连文 译 2005 液态金属的物理性能(北京: 科学出版社)第50-74页]

    [19]

    Keene B J 1993 Int. Mater. Rev. 38 157

    [20]

    Lighthill J 2010 Waves in Fluids Reprint (Beijing: Beijing World Publishing Corporation) pp11-17

    [21]

    Rienstra S W, Hirschberg A 2014 An Introduction to Acoustics (Eindhoven: Eindhoven University of Technology) pp65-67

    [22]

    Babuška I, Ihlenburg F, Paik E T, Sauter S A 1995 Comput. Method Appl. M. 128 325

    [23]

    Ihlenburg F, Babuška I 1995 Comput. Math. Appl. 30 9

    [24]

    Noltingk B E, Neppiras E A

    [25]

    Hilgenfeldt S, Brenner M P, Grossmann S, Lohse Detlef 1998 J. Fluid Mech. 365 171

    [26]

    Du G H, Zhu Z M, Xi X F 2012 Fundamentals of acoustics (the third edition) (Nanjing: Nanjing University Press) pp223-230 (in Chinese) [杜功焕, 朱哲民, 袭秀芳 2012 声学基础 (第三版) (南京: 南京大学出版社)第223-230页]

    [27]

    Zhang H W, Li Y X 2007 Acta Phy. Sin. 56 4864 (in Chinese) [张华伟, 李言祥 2007 物理学报 56 4864]

    [28]

    Glycerine Producers' Association 1963 Physical Properties of Glycerine and Its Solutions (Glycerine: Glycerine Producers' Association) pp3-24

  • [1] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制. 物理学报, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [2] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法. 物理学报, 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [3] 刘金河, 沈壮志, 林书玉. 机械搅拌对声空化动力学特性的影响. 物理学报, 2021, 70(22): 224301. doi: 10.7498/aps.70.20211244
    [4] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [5] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [6] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [7] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [8] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [9] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析. 物理学报, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [10] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [11] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [12] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [13] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [14] 濮春英, 刘廷禹, 刘长捷, 白晓明, 李春萍, 佘辉. 碘化铯晶体中电子型色心的电子结构研究. 物理学报, 2010, 59(1): 453-457. doi: 10.7498/aps.59.453
    [15] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究. 物理学报, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [16] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] 叶剑勇, 张淳民, 赵葆常, 李英才. 高层大气风场四强度测量法误差分析与计算. 物理学报, 2008, 57(1): 67-73. doi: 10.7498/aps.57.67
    [18] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [19] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [20] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. “神光Ⅱ”装置激光输出波形的数值模拟. 物理学报, 2004, 53(12): 4189-4193. doi: 10.7498/aps.53.4189
计量
  • 文章访问数:  6132
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-01-27
  • 刊出日期:  2015-07-05

/

返回文章
返回