搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械搅拌对声空化动力学特性的影响

刘金河 沈壮志 林书玉

引用本文:
Citation:

机械搅拌对声空化动力学特性的影响

刘金河, 沈壮志, 林书玉

Effect of mechanical agitation on ultrasonic cavitation dynamics

Liu Jin-He, Shen Zhuang-Zhi, Lin Shu-Yu
PDF
HTML
导出引用
  • 涡流场影响着声场分布, 进而影响着声空化特性, 以机械搅拌产生的涡流场为研究对象, 使用COMSOL软件数值模拟了不同搅拌速度下的声场分布情况. 结果显示, 机械搅拌增加了声场分布的均匀性和声压幅值. 接下来将仿真得到的瞬时声压值用Origin软件拟合, 然后将拟合得到的声压函数代入Keller-Miksis气泡动力学方程中, 得到了不同搅拌速度下空化泡的半径随时间的变化情况, 从计算结果中发现, 未加机械搅拌的条件下, 只有z = 7.3 cm截面上有空化效应产生. 最后根据所得到的空化泡半径, 计算了空化泡内部的温度. 结果显示, 空化泡在有搅拌存在的条件下, 内部温度得到了大幅增加, 当搅拌速度达到1000 r/min后, 空化泡内部温度会随着搅拌速度的增加而降低. 最后设计实验验证了仿真结果. 仿真得到的结果不仅从理论上解释了机械搅拌提高有机溶液超声降解率的原因, 还发现了过高的搅拌速度会降低声空化强度, 从而降低声化学反应速率, 这为通过机械搅拌来进一步提高超声降解率提供了新思路.
    In order to further investigate the effect of the vortex induced by mechanical agitation on the ultrasonic degradation rate of organic solution, with water used as a medium, the acoustic field distributions at different stirring speeds are simulated by using the simulation software COMSOL. The simulation of acoustic field distribution is divided into two steps. First, the flow field distribution in the cleaning tank is obtained by using the Navier-Stokes equation and the continuity equation under the corresponding boundary conditions. Next, the velocity and pressure in the flow field are substituted into the acoustic wave equation to obtain the acoustic field distribution. In addition, the instantaneous acoustic pressure obtained by simulation is fitted by Origin, and the fitting curve shows a good sinusoidal shape. Then, substituting the fitting function into the Keller-Miksis equation, the variations of radius of the cavitation bubble with time at different stirring speeds are obtained. Finally, the temperature of the cavitation bubble is calculated from the obtained radius. The results show that mechanical agitation increases the uniformity of acoustic field distribution and the amplitude of acoustic pressure, and that the bubble temperature is greatly enhanced due to the agitation. At the same time, it is also found that the internal temperature of the bubble first increases with the stirring speed increasing. When the stirring speed reaches 1500 r/min, the temperature begins to decrease with the stirring speed increasing. The temperature inside the cavitation bubble reflects the intensity of acoustic cavitation. The higher the temperature, the greater the intensity of acoustic cavitation will be. Therefore, it can be concluded that the acoustic cavitation intensity will decrease when the stirring speed is too high. Therefore, though mechanical agitation can improve the acoustic cavitation intensity, too high stirring speed can reduce the acoustic cavitation intensity. In order to verify the simulation results, the degradation of methylene blue is performed by ultrasound coupled with mechanical agitation, and the experimental results show that the degradation rate of the solution without mechanical stirring is lowest. The degradation rate of the solution increases with the stirring speed increasing. When the stirring speed reaches 1000 r/min, the degradation rate of the solution is the same as that at 600 r/min, and then decreases with the stirring speed increasing. It can be found that the experimental results are consistent with the simulation results. The simulation results not only theoretically explain why mechanical agitation can improve the ultrasonic degradation rate of organic solution, but also indicate that too high stirring speed can reduce the acoustic cavitation intensity, thus reducing the sonochemical reaction rate. Therefore, the results obtained in this work provide a new idea for further improving the ultrasonic degradation rate by mechanical agitation.
      通信作者: 沈壮志, szz6@163.com
    • 基金项目: 国家自然科学基金(批准号: 11674207, 11674206)资助的课题.
      Corresponding author: Shen Zhuang-Zhi, szz6@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674207, 11674206).
    [1]

    Mahamuni N N, Adewuyi A G 2010 Ultrason. Sonochem. 17 990Google Scholar

    [2]

    李宁, 闫家望 2021 中国资源综合利用 39 99Google Scholar

    Li N, Yan J W 2021 China Resources Comprehensive Utilization 39 99Google Scholar

    [3]

    Shimizu N, Ogino C, Dadjour M F, Murata T 2007 Ultrason. Sonochem. 14 184Google Scholar

    [4]

    Suslick K S, Didenko Y, Fang M M, et al. 1999 Phil. Trans. R. Soc. A 357 335Google Scholar

    [5]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci 29 295Google Scholar

    [6]

    Kobayashi D, Honma C, Suzuki A, Takahashi T, Matsumoto H, Kuroda C, Otake K, Shono A 2012 Ultrason. Sonochem. 19 745Google Scholar

    [7]

    Nikpassand M, Fekri L Z, Farokhian P 2016 Ultrason. Sonochem. 28 341Google Scholar

    [8]

    Shanei A, Shanei M M 2017 Ultrason. Sonochem. 34 45Google Scholar

    [9]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B 2017 Ultrason. Sonochem. 34 130Google Scholar

    [10]

    Jawale R H, Gogate P R 2018 Ultrason. Sonochem. 40 89Google Scholar

    [11]

    Kobayashi D, Honma C, Matsumoto H, Otake K, Shono A 2018 Open J. Acoust. 8 61Google Scholar

    [12]

    Kwedi-Nsah L M, Kobayashi T 2019 Ultrason. Sonochem. 52 69Google Scholar

    [13]

    Wang J, Wang Z, Wolfson J M, Pingtian G, Huang S D 2019 Ultrason. Sonochem. 55 273Google Scholar

    [14]

    Serna-Galvis E A, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma R A 2019 Ultrason. Sonochem. 50 157Google Scholar

    [15]

    Fang Y, Hariu D, Yamamoto T, Komarov S 2019 Ultrason. Sonochem. 52 318Google Scholar

    [16]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [17]

    Lesko T, Colussi A G, Hoffmann M R 2006 Environ. Sci. Technol. 40 6818Google Scholar

    [18]

    Yasuda K, Matsuura K, Asakura1 Y, Koda S 2009 Jpn. J. Appl. Phys. 48 07GH04Google Scholar

    [19]

    Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H 2006 Ultrasonics 44 e435Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Wood R J, Vévert C, Lee J, Bussemaker M J 2020 Ultrason. Sonochem. 63 104892Google Scholar

    [22]

    Nakui H, Okitsu K, Maeda Y, Nishimura R. 2007 J. Hazard. Mater. 146 636Google Scholar

    [23]

    Zhang X G, Hao C C, Ma C, Shen Z Z 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [24]

    Yang Y, Yang J k, Zuo J L, Li Y, He S, Yang X, Zhang K 2011 Water Res. 45 3439Google Scholar

    [25]

    Pierce A D 1990 J. Acoust. Soc. Am. 87 2292Google Scholar

    [26]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [27]

    Saez V, Frias-Fsrrer A, Iniesta J, Gonzalez J, Aldaz A, Riera E 2005 Ultrason. Sonochem. 12 59Google Scholar

    [28]

    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P 2007 Ultrason. Sonochem. 14 605Google Scholar

    [29]

    Zhang Z B, Gao T T, Liu X Y, Li D W, Zhao J W, Lei Y Q, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [30]

    Vanhille C 2016 Ultrason. Sonochem. 31 631Google Scholar

    [31]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第160页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p160 (in Chinese)

    [32]

    Liu L Y, Wen J J, Yang Y, Tian W 2013 Ultrason. Sonochem 20 696Google Scholar

    [33]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第137页

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing: Nanjing University Press) p137 (in Chinese)

    [34]

    Berthet R, Astruc D Astruc D 2003 J. Comput. Phys. 190 64Google Scholar

    [35]

    Li Z W, Xu Z W, Zhao D G, Chen S, Yan J C 2021 Ultrason. Sonochem. 71 105356Google Scholar

  • 图 1  (a) 超声清洗槽模型的结构示意图; (b) 仿真模型的网格图

    Fig. 1.  (a) Geometry and configurations of the cleaning tank; (b) the mesh used for simulations.

    图 2  不同搅拌速度下的声场分布图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Fig. 2.  Acoustic pressure distribution at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 3  驻波声场中波腹和波节的位置

    Fig. 3.  The position of the peaks and troughs in the standing wave acoustic field.

    图 4  水槽内各个截面上声场分布图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d)1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Fig. 4.  Acoustic pressure distribution at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 5  不同搅拌速度下, 提取点处的声压随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Fig. 5.  Acoustic pressure versus time for extracted point at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 6  不同搅拌速度下, 空化泡半径随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Fig. 6.  The radius of cavitation bubble at the stirring speed of (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 7  不同搅拌速度下, 空化泡内部的温度随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Fig. 7.  Internal temperature of bubble under distinct stirring speeds in the plane of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 8  (a) 实验装置图; (b) 不同搅拌速度下溶液的降解率

    Fig. 8.  (a) The experimental apparatus; (b) degradation rate of solution at different stirring speeds.

    表 1  材料参数.

    Table 1.  Material parameters.

    材料$ {\rho _0} $/($ {\rm{kg}} \cdot {{\rm{m}}^{{\rm{ - 3}}}} $)$ {c_0} $/(m s–1)$ \mu $/(Pa s)
    100015001.01 × 10–3
    空气1.293401.79 × 10–5
    下载: 导出CSV
  • [1]

    Mahamuni N N, Adewuyi A G 2010 Ultrason. Sonochem. 17 990Google Scholar

    [2]

    李宁, 闫家望 2021 中国资源综合利用 39 99Google Scholar

    Li N, Yan J W 2021 China Resources Comprehensive Utilization 39 99Google Scholar

    [3]

    Shimizu N, Ogino C, Dadjour M F, Murata T 2007 Ultrason. Sonochem. 14 184Google Scholar

    [4]

    Suslick K S, Didenko Y, Fang M M, et al. 1999 Phil. Trans. R. Soc. A 357 335Google Scholar

    [5]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci 29 295Google Scholar

    [6]

    Kobayashi D, Honma C, Suzuki A, Takahashi T, Matsumoto H, Kuroda C, Otake K, Shono A 2012 Ultrason. Sonochem. 19 745Google Scholar

    [7]

    Nikpassand M, Fekri L Z, Farokhian P 2016 Ultrason. Sonochem. 28 341Google Scholar

    [8]

    Shanei A, Shanei M M 2017 Ultrason. Sonochem. 34 45Google Scholar

    [9]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B 2017 Ultrason. Sonochem. 34 130Google Scholar

    [10]

    Jawale R H, Gogate P R 2018 Ultrason. Sonochem. 40 89Google Scholar

    [11]

    Kobayashi D, Honma C, Matsumoto H, Otake K, Shono A 2018 Open J. Acoust. 8 61Google Scholar

    [12]

    Kwedi-Nsah L M, Kobayashi T 2019 Ultrason. Sonochem. 52 69Google Scholar

    [13]

    Wang J, Wang Z, Wolfson J M, Pingtian G, Huang S D 2019 Ultrason. Sonochem. 55 273Google Scholar

    [14]

    Serna-Galvis E A, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma R A 2019 Ultrason. Sonochem. 50 157Google Scholar

    [15]

    Fang Y, Hariu D, Yamamoto T, Komarov S 2019 Ultrason. Sonochem. 52 318Google Scholar

    [16]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [17]

    Lesko T, Colussi A G, Hoffmann M R 2006 Environ. Sci. Technol. 40 6818Google Scholar

    [18]

    Yasuda K, Matsuura K, Asakura1 Y, Koda S 2009 Jpn. J. Appl. Phys. 48 07GH04Google Scholar

    [19]

    Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H 2006 Ultrasonics 44 e435Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Wood R J, Vévert C, Lee J, Bussemaker M J 2020 Ultrason. Sonochem. 63 104892Google Scholar

    [22]

    Nakui H, Okitsu K, Maeda Y, Nishimura R. 2007 J. Hazard. Mater. 146 636Google Scholar

    [23]

    Zhang X G, Hao C C, Ma C, Shen Z Z 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [24]

    Yang Y, Yang J k, Zuo J L, Li Y, He S, Yang X, Zhang K 2011 Water Res. 45 3439Google Scholar

    [25]

    Pierce A D 1990 J. Acoust. Soc. Am. 87 2292Google Scholar

    [26]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [27]

    Saez V, Frias-Fsrrer A, Iniesta J, Gonzalez J, Aldaz A, Riera E 2005 Ultrason. Sonochem. 12 59Google Scholar

    [28]

    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P 2007 Ultrason. Sonochem. 14 605Google Scholar

    [29]

    Zhang Z B, Gao T T, Liu X Y, Li D W, Zhao J W, Lei Y Q, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [30]

    Vanhille C 2016 Ultrason. Sonochem. 31 631Google Scholar

    [31]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第160页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p160 (in Chinese)

    [32]

    Liu L Y, Wen J J, Yang Y, Tian W 2013 Ultrason. Sonochem 20 696Google Scholar

    [33]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第137页

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing: Nanjing University Press) p137 (in Chinese)

    [34]

    Berthet R, Astruc D Astruc D 2003 J. Comput. Phys. 190 64Google Scholar

    [35]

    Li Z W, Xu Z W, Zhao D G, Chen S, Yan J C 2021 Ultrason. Sonochem. 71 105356Google Scholar

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [4] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [5] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法. 物理学报, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [6] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [7] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [8] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [9] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究. 物理学报, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [10] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [11] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [12] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [13] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [15] 李荣华, 孟卫民, 彭应全, 马朝柱, 汪润生, 谢宏伟, 王颖, 叶早晨. 阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究. 物理学报, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [16] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [19] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法. 物理学报, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
计量
  • 文章访问数:  3904
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-03
  • 修回日期:  2021-07-24
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回