-
自研傅里叶变换红外光谱仪在龙凤山大气本底站测量CO2, CH4等温室气体. 自研仪器的测量结果与符合世界气象组织标准的本底站仪器的测量结果进行对比, 结果表明: 自研仪器与本底站仪器测量的CO2浓度值相关系数为0.9576, 均方根误差为18.6015. 自研仪器使用标准温度、压力下的校准光谱反演浓度, 但测量气体的温度随着气温变化, 导致自研仪器反演浓度有误差. 基于以上分析, 提取高分辨率透射分子吸收数据库参数计算吸收截面并结合仪器线形计算不同温度、压力下的校准光谱, 根据不同温度、压力下的校准光谱来校准反演浓度. 校准后, 自研与本底站仪器测量的CO2浓度值相关系数为0.9637, 均方根误差为6.7800. 自研与本底站仪器测量的CO2浓度值相关系数提高, 绝对误差减小, 说明校准算法提高了测量结果的精确度.
-
关键词:
- 傅里叶变换红外光谱技术 /
- 温室气体 /
- 温度 /
- 压力
The CO2, CH4 and other greenhouse gases are measured by using a home-made Fourier transform infrared spectrometer at the Longfengshan atmospheric background station. Compared with the measurement results of the instrument from the background station which meets the standards of the World Meteorological Organization, the correlation coefficient and the root mean square error of the CO2 concentration value are 0.9576 and 18.6015, so the measurement results from the home-made instrument are reliable. In the home-made instrument the calibration spectrum of standard temperature and the calibration spectrum of stand pressure are used to invert the concentration. With the temperature changing, the temperature of the measured gas will vary, thus resulting in error. The research of environmental variable factors can improve the accuracy of concentration inversion. For example, compared with CO2 absorption spectrum under 296 K, the CO2 absorption spectrum under 297 K will have 1.8% spectrum deviation and its inversion concentration error is 0.41%. This is the main cause of inversion concentration error. Based on the above analysis, the absorption cross section is calculated by using the high-resolution transmission molecular absorption database parameters. Combining with the instrument line shape, the calibration spectra at different temperatures and pressures can be obtained. The calibration spectra at different temperatures and pressures are used to calibrate the concentration inversion. After calibration, compared with the measurement results of the background station instrument, the correlation coefficient and the root mean square error of the CO2 concentration value are 0.9637 and 6.7803. The correlation coefficient of CO2 concentration value measured by self-developed instrument is improved and root mean square error is reduced. The result shows that the calibration algorithm enhances the accuracy of the measurement results to a certain extent. The above results illustrate the reliability of the home-made FTIR instrument and this experiment provides important data, which lay the foundation forstudying the home-made Fourier transform infrared spectrometer. Of course, improvement can be made in the following areas. Other minor factors may affect the effect of the inversion algorithm. The concentration inversion will have subtle differences at different bands of calibration spectra. So in order to improve the measurement accuracy, we need to choice more reasonable band inversion and more precise parameters from the high-resolution transmission molecular absorption database.-
Keywords:
- FTIR /
- greenhouse gases /
- temperature /
- pressure
[1] Keeling C D, Whorf T P, Wahlen M, Van der Plichtt J 1995 Nature 375 666Google Scholar
[2] Hodgkinson J, Smith R, Ho W O, Saffell J R, Tatam R P 2013 Sens. Actuators, B 186 580Google Scholar
[3] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C 2010 Atmos. Meas. Tech. 3 375Google Scholar
[4] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar
Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar
[5] Zhang C, Liu C, Hu Q, Cai Z, Su W, Xia C, Zhu Y, Wang S, Liu J 2019 Light- Sci. Appl. 8 1Google Scholar
[6] Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F 2020 Light-Sci. Appl. 9 1Google Scholar
[7] Lamouroux J, Régalia L, Thomas X, Vander Auwera J, Gamache R, Hartmann J M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 88Google Scholar
[8] Griffith D W 1996 Appl. Spectrosc. 50 59Google Scholar
[9] Esler M B, Griffith D W, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar
[10] Hammer S, Griffith D W T, Konrad G, Vardagl S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar
[11] Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar
[12] Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp19−21
[13] Arnold J O, Whiting E E, Lyle G C 1969 J. Quant. Spectrosc. Radiat. Transfer 9 775Google Scholar
[14] Heinz D C 2001 IEEE Trans. Geosci. Electron. 39 529Google Scholar
[15] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar
Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar
[16] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar
Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin 62 140705Google Scholar
[17] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[18] Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar
[19] Bernardo C, Griffith D W T 2005 J. Quant. Spectrosc. Radiat. Transfer 95 141Google Scholar
[20] Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 J. Quant. Spectrosc. Radiat. Transfer 177 15Google Scholar
-
-
[1] Keeling C D, Whorf T P, Wahlen M, Van der Plichtt J 1995 Nature 375 666Google Scholar
[2] Hodgkinson J, Smith R, Ho W O, Saffell J R, Tatam R P 2013 Sens. Actuators, B 186 580Google Scholar
[3] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C 2010 Atmos. Meas. Tech. 3 375Google Scholar
[4] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar
Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar
[5] Zhang C, Liu C, Hu Q, Cai Z, Su W, Xia C, Zhu Y, Wang S, Liu J 2019 Light- Sci. Appl. 8 1Google Scholar
[6] Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F 2020 Light-Sci. Appl. 9 1Google Scholar
[7] Lamouroux J, Régalia L, Thomas X, Vander Auwera J, Gamache R, Hartmann J M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 88Google Scholar
[8] Griffith D W 1996 Appl. Spectrosc. 50 59Google Scholar
[9] Esler M B, Griffith D W, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar
[10] Hammer S, Griffith D W T, Konrad G, Vardagl S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar
[11] Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar
[12] Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp19−21
[13] Arnold J O, Whiting E E, Lyle G C 1969 J. Quant. Spectrosc. Radiat. Transfer 9 775Google Scholar
[14] Heinz D C 2001 IEEE Trans. Geosci. Electron. 39 529Google Scholar
[15] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar
Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar
[16] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar
Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin 62 140705Google Scholar
[17] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[18] Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar
[19] Bernardo C, Griffith D W T 2005 J. Quant. Spectrosc. Radiat. Transfer 95 141Google Scholar
[20] Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 J. Quant. Spectrosc. Radiat. Transfer 177 15Google Scholar
计量
- 文章访问数: 5565
- PDF下载量: 88
- 被引次数: 0