搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度压力对浓度反演精度的定量分析

王钰豪 刘建国 徐亮 刘文清 宋庆利 金岭 徐寒杨

引用本文:
Citation:

不同温度压力对浓度反演精度的定量分析

王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨

Quantitative analysis of accuracy of concentration inversion under different temperature and pressure

Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang
PDF
HTML
导出引用
  • 自研傅里叶变换红外光谱仪在龙凤山大气本底站测量CO2, CH4等温室气体. 自研仪器的测量结果与符合世界气象组织标准的本底站仪器的测量结果进行对比, 结果表明: 自研仪器与本底站仪器测量的CO2浓度值相关系数为0.9576, 均方根误差为18.6015. 自研仪器使用标准温度、压力下的校准光谱反演浓度, 但测量气体的温度随着气温变化, 导致自研仪器反演浓度有误差. 基于以上分析, 提取高分辨率透射分子吸收数据库参数计算吸收截面并结合仪器线形计算不同温度、压力下的校准光谱, 根据不同温度、压力下的校准光谱来校准反演浓度. 校准后, 自研与本底站仪器测量的CO2浓度值相关系数为0.9637, 均方根误差为6.7800. 自研与本底站仪器测量的CO2浓度值相关系数提高, 绝对误差减小, 说明校准算法提高了测量结果的精确度.
    The CO2, CH4 and other greenhouse gases are measured by using a home-made Fourier transform infrared spectrometer at the Longfengshan atmospheric background station. Compared with the measurement results of the instrument from the background station which meets the standards of the World Meteorological Organization, the correlation coefficient and the root mean square error of the CO2 concentration value are 0.9576 and 18.6015, so the measurement results from the home-made instrument are reliable. In the home-made instrument the calibration spectrum of standard temperature and the calibration spectrum of stand pressure are used to invert the concentration. With the temperature changing, the temperature of the measured gas will vary, thus resulting in error. The research of environmental variable factors can improve the accuracy of concentration inversion. For example, compared with CO2 absorption spectrum under 296 K, the CO2 absorption spectrum under 297 K will have 1.8% spectrum deviation and its inversion concentration error is 0.41%. This is the main cause of inversion concentration error. Based on the above analysis, the absorption cross section is calculated by using the high-resolution transmission molecular absorption database parameters. Combining with the instrument line shape, the calibration spectra at different temperatures and pressures can be obtained. The calibration spectra at different temperatures and pressures are used to calibrate the concentration inversion. After calibration, compared with the measurement results of the background station instrument, the correlation coefficient and the root mean square error of the CO2 concentration value are 0.9637 and 6.7803. The correlation coefficient of CO2 concentration value measured by self-developed instrument is improved and root mean square error is reduced. The result shows that the calibration algorithm enhances the accuracy of the measurement results to a certain extent. The above results illustrate the reliability of the home-made FTIR instrument and this experiment provides important data, which lay the foundation forstudying the home-made Fourier transform infrared spectrometer. Of course, improvement can be made in the following areas. Other minor factors may affect the effect of the inversion algorithm. The concentration inversion will have subtle differences at different bands of calibration spectra. So in order to improve the measurement accuracy, we need to choice more reasonable band inversion and more precise parameters from the high-resolution transmission molecular absorption database.
      通信作者: 徐亮, xuliang@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41941011)、中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-DQC016)、国家重点研发计划(批准号: 2016YFC0201002, 2016YFC0803001-08)、安徽省重点研究和发展计划(批准号: 1804d08020300)资助的课题
      Corresponding author: Xu Liang, xuliang@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41941011), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC016), the National Key R&D Program of China (Grant Nos. 2016YFC0201002, 2016YFC0803001-08), the Key RD Program of Anhui Province, China (Grant No. 1804d08020300)
    [1]

    Keeling C D, Whorf T P, Wahlen M, Van der Plichtt J 1995 Nature 375 666Google Scholar

    [2]

    Hodgkinson J, Smith R, Ho W O, Saffell J R, Tatam R P 2013 Sens. Actuators, B 186 580Google Scholar

    [3]

    Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C 2010 Atmos. Meas. Tech. 3 375Google Scholar

    [4]

    程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar

    Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar

    [5]

    Zhang C, Liu C, Hu Q, Cai Z, Su W, Xia C, Zhu Y, Wang S, Liu J 2019 Light- Sci. Appl. 8 1Google Scholar

    [6]

    Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F 2020 Light-Sci. Appl. 9 1Google Scholar

    [7]

    Lamouroux J, Régalia L, Thomas X, Vander Auwera J, Gamache R, Hartmann J M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 88Google Scholar

    [8]

    Griffith D W 1996 Appl. Spectrosc. 50 59Google Scholar

    [9]

    Esler M B, Griffith D W, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar

    [10]

    Hammer S, Griffith D W T, Konrad G, Vardagl S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar

    [11]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar

    [12]

    Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp19−21

    [13]

    Arnold J O, Whiting E E, Lyle G C 1969 J. Quant. Spectrosc. Radiat. Transfer 9 775Google Scholar

    [14]

    Heinz D C 2001 IEEE Trans. Geosci. Electron. 39 529Google Scholar

    [15]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [16]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin 62 140705Google Scholar

    [17]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [18]

    Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar

    [19]

    Bernardo C, Griffith D W T 2005 J. Quant. Spectrosc. Radiat. Transfer 95 141Google Scholar

    [20]

    Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 J. Quant. Spectrosc. Radiat. Transfer 177 15Google Scholar

  • 图 1  干涉仪

    Fig. 1.  Interferometer.

    图 2  (a)仪器主机在线测量状态; (b)仪器外界进气口

    Fig. 2.  (a) Online measurement status of instrument host; (b) external air inlet of the instrument.

    图 3  (a) CO2在2290—2380 cm–1的光谱线强度Sij; (b) CO2在2290—2380 cm–1的吸收系数kij; (c) CO2仿真吸光度谱Aij

    Fig. 3.  (a) the spectral line intensity Sij at 2290–2380 cm–1 of CO2; (b) absorption coefficient kij at 2290–2380 cm–1 of CO2; (c) simulated absorbance spectrum Aij of CO2.

    图 4  (a) CO2在2290—2380 cm–1的仿真吸光度谱Aij; (b) 297—306 K下仿真吸光度谱相比于296 K仿真吸收光谱在拟合波段的残差

    Fig. 4.  (a) The simulated absorbance spectrum Aij under 286–306 K of CO2; (b) the residual of the simulated absorbance spectrum at 297–306 K compared to the simulated absorption spectrum at 296 K in the fitted band.

    图 5  (a)光谱数据(1000—3500 cm–1); (b)光谱数据的一致性

    Fig. 5.  (a) Spectral data; (b) consistency of spectral data.

    图 6  (a) CO2浓度趋势对比; (b) CO2浓度值线性拟合; (c)校准后CO2浓度趋势对比; (d)校准后CO2浓度值线性拟合

    Fig. 6.  (a) CO2 concentration trend comparison; (b) CO2 concentration value linear fitting; (c) CO2 concentration trend comparison after calibration; (d) linear fitting of CO2 concentration value after calibration.

  • [1]

    Keeling C D, Whorf T P, Wahlen M, Van der Plichtt J 1995 Nature 375 666Google Scholar

    [2]

    Hodgkinson J, Smith R, Ho W O, Saffell J R, Tatam R P 2013 Sens. Actuators, B 186 580Google Scholar

    [3]

    Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C 2010 Atmos. Meas. Tech. 3 375Google Scholar

    [4]

    程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar

    Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar

    [5]

    Zhang C, Liu C, Hu Q, Cai Z, Su W, Xia C, Zhu Y, Wang S, Liu J 2019 Light- Sci. Appl. 8 1Google Scholar

    [6]

    Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F 2020 Light-Sci. Appl. 9 1Google Scholar

    [7]

    Lamouroux J, Régalia L, Thomas X, Vander Auwera J, Gamache R, Hartmann J M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 88Google Scholar

    [8]

    Griffith D W 1996 Appl. Spectrosc. 50 59Google Scholar

    [9]

    Esler M B, Griffith D W, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar

    [10]

    Hammer S, Griffith D W T, Konrad G, Vardagl S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar

    [11]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar

    [12]

    Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp19−21

    [13]

    Arnold J O, Whiting E E, Lyle G C 1969 J. Quant. Spectrosc. Radiat. Transfer 9 775Google Scholar

    [14]

    Heinz D C 2001 IEEE Trans. Geosci. Electron. 39 529Google Scholar

    [15]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [16]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin 62 140705Google Scholar

    [17]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [18]

    Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar

    [19]

    Bernardo C, Griffith D W T 2005 J. Quant. Spectrosc. Radiat. Transfer 95 141Google Scholar

    [20]

    Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 J. Quant. Spectrosc. Radiat. Transfer 177 15Google Scholar

  • [1] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱. 物理学报, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析. 物理学报, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [3] 刘丹丹, 黄印博, 孙宇松, 卢兴吉, 曹振松. 对流层顶高对拉萨地区温室气体柱浓度反演的影响. 物理学报, 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431
    [4] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [5] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [6] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究. 物理学报, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [7] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [8] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究. 物理学报, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [10] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [11] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [12] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应. 物理学报, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [13] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [14] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [16] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [17] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [18] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [19] 聂 颖, 隋 郁, 宋秀丹, 王先杰, 程金光, 千正男, 苏文辉. 成型压力对CrO2低温输运性质的影响. 物理学报, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [20] 彭建祥, 经福谦, 王礼立, 李大红. 冲击压缩下铝、铜、钨的剪切模量和屈服强度与压力和温度的相关性. 物理学报, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
计量
  • 文章访问数:  5565
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-23
  • 上网日期:  2021-03-26
  • 刊出日期:  2021-04-05

/

返回文章
返回