搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响

金阳 张平 李永军 侯永 曾交龙 袁建民

引用本文:
Citation:

温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响

金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民

Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter

Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min
PDF
HTML
导出引用
  • 在天体物理和惯性约束聚变研究中涉及到的温稠密物质通常包含多种元素的混合, 并且每种元素还被电离成多种离子价态, 不同价态离子结构及其丰度将直接影响温稠密物质的诊断及其物理性质. 同时, 从电子结构计算出发来研究宏观物理性质时, 还需要考虑温度、密度效应对离子结构的影响. 本文从不同价态离子的电子结构计算出发, 采用考虑了离子间相互作用的Saha方程获得了稠密环境下的离子丰度, 并使用超网链(hypernetted-chain)近似对铝、金以及碳-氢混合物的径向分布函数进行了计算, 结合离子周围电子的密度分布, 最后获得X-射线汤姆逊散射的弹性散射谱. 在X-射线散射谱计算中, 计算了温稠密物质中同时存在不同离子价态时的电子结构和径向分布函数, 发现在相同的等离子体环境下不同价态离子的径向分布函数和电子结构差别较大. 这将对依赖于微观统计过程的物理性质, 比如散射光谱, 将产生较大的影响.
    The study of warm dense matter is very important for the evolution of celestial bodies and inertial confinement fusion, which often contains a mixture of multiple elements and different charge-state ions. The ionic structure and distribution of different charge-states directly affect the diagnosis and physical properties of warm dense matter. At the same time, the influence of high-temperature dense plasma on the ionic structure should be considered when we study the physical properties from the first-principle calculation of electron structure. In the present work, the radial distribution functions of multiple charge-state ions (gold, carbon-hydrogen mixture, and aluminum) are developed in the hypernetted-chain approximation, and elastic x-ray scattering of different charge-state ions are calculated in the warm dense matter regime. Firstly, the electron structure of different charge-state ions is self-consistently computed in the ionic sphere, in which the ion-sphere radii are determined by the plasma density and their charges. And then the ionic fraction is obtained by solving the modified Saha equation, with the interactions among different charge-state ions taken into account, and ion-ion pair potentials are obtained by Yukawa model. Finally, the ion features of x-ray elastic scattering for Al are calculated on the basis of electronic distribution around the nuclei and ionic radial distribution function. By comparing the results of different charge-sate ions with the result of mean charge-sate ion, it is shown that different statistical methods can affect the physical properties which are dependent on the electronic and ionic structure.
      通信作者: 侯永, yonghou@nudt.edu.cn
    • 基金项目: 科学挑战计划(批准号: TZ2018005)和国家自然科学基金(批准号: 11974424, 11774322)资助的课题
      Corresponding author: Hou Yong, yonghou@nudt.edu.cn
    • Funds: Project supported by Science Challenge Project (Grant No. TZ2018005) and National Natural Science Foundation of China (Grant Nos. 11974424, 11774322)
    [1]

    Clérouin J, Arnault P, Gréa B J, Guisset S, Vandenboomgaerde M, White A J, Collins L A, Kress J D, Ticknor C 2020 Phys. Rev. E 101 033207Google Scholar

    [2]

    Wünsch K, Hilse P, Schlanges M, Gericke D.O 2008 Phys. Rev. E 77 056404Google Scholar

    [3]

    Hou Y, Bredow R, Yuan J M, Redmer R 2015 Phys. Rev. E 91 033114

    [4]

    Daligault J, Baalrud S D, Starrett C E, SaumonD, Sjostrom T 2016 Phys. Rev. Lett. 116 075002Google Scholar

    [5]

    马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军 2017 物理学报 66 036401Google Scholar

    Ma G C, Zhang Q L, Song H Z, Li Q, Zhu X R, Meng X J 2017 Acta Phys. Sin. 66 036401Google Scholar

    [6]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001

    [7]

    Desjarlais M P 2003 Phys. Rev. B 68 064204Google Scholar

    [8]

    Kuhne T D, Krack M, Mohamed F R, Parrinello M 2007 Phys. Rev. Lett. 98 066401Google Scholar

    [9]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [10]

    Zérah G, Clérouin J, Pollock E L 1992 Phys. Rev. Lett. 69 446Google Scholar

    [11]

    Fu Y S, Hou Y, Kang D D, Gao C, Jin F T, Yuan J M 2018 Phys. Plasmas 25 012701Google Scholar

    [12]

    Bredow R, Bornath T, Kraeft W D, Redmer R 2013 Contrib. Plasma Phys. 53 276Google Scholar

    [13]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (Oxford : Oxford University Press) pp54−55

    [14]

    Tanaka S 2016 J. Chem. Phys. 145 214104Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys 86 675

    [16]

    王天浩, 王坤, 张阅, 姜林村 2020 物理学报 69 099101Google Scholar

    Wang T H, Wang K, Zhang Y, Jiang L C 2020 Acta Phys. Sin. 69 099101Google Scholar

    [17]

    Brush S G, Sahlin H L, Teller E 1966 J. Chem. Phys. 45 2102Google Scholar

    [18]

    Deutsch C 1977 Phys. Lett. A 60 317Google Scholar

    [19]

    Schwarz V, Bornath T, Kraeft W D, Glenzer S H, Höll A, Redmer R 2007 Contrib. Plasma Phys. 47 324Google Scholar

    [20]

    Kelbg G 1964 Ann. Phys. 13 354

    [21]

    Chihara J 2000 J. Phys. Condens. Matter 12 231Google Scholar

    [22]

    Wünsch K, Vorberger J, Gregorz G, Gericke D O 2011 EPL 94 25001Google Scholar

    [23]

    Iglesias C A 2018 High Energy Density Phys. 26 81Google Scholar

    [24]

    Rüter H R, Redmer R 2014 Phys. Rev. Lett. 112 145007Google Scholar

    [25]

    Souza A N, Perkins D J, Starrett C E, Saumon D, Hansen S B 2014 Phys. Rev. E 89 023108Google Scholar

    [26]

    Ma T, Döppner T, Falcone R W, Fletcher L, Fortmann C, Gericke D O, Landen O L, Lee H J, Pak A, Vorberger J, Wünsch K, Glenzer S H 2013 Phys. Rev. Lett. 110 065001Google Scholar

    [27]

    Clérouin J, Robert G, Arnault P 2015 Phys. Rev. E 91 011101(RGoogle Scholar

    [28]

    Hou Y, Fu Y S, Bredow R, Kang D D, Redmer R, Yuan J M 2017 High Energy Density Phys. 22 21Google Scholar

  • 图 1  在温度为104 K、离子数密度为1024 cm–3时, Au1+和Au2+混合离子价态的径向分布函数. Present表示本文工作的计算结果(实线); HNC表示文献[2]中采用HNC近似计算的结果(虚线 + 上三角); OCP表示平均成一种价态离子的径向分布函数; average表示各价离子的径向分布函数的算数平均

    Fig. 1.  The radial distribution function of Au1+, Au2+ in gold plasma with ion number density of 1024 cm–3 and temperature of 104 K. Present represents the result of the present paper (solid line); HNC represents the result of HNC approximation in the Ref. [2] (dotted line + upper triangle); OCP is the radial distribution function of mean charge-state ion; average labels the average results of the radial distribution function of different charge-state ions.

    图 2  在离子数密度为nH = nC = 2.5 × 1023 cm–3、温度为T = 2 × 104 K时, 碳-氢混合等离子体中C4+和H+的径向分布函数; Present是本文计算结果(实线), HNC是文献[2]中用HNC近似的计算结果(虚线 + 上三角)

    Fig. 2.  The radial distribution function of C4+ and H+ in the CH mixture plasma at number density, nH = nC = 2.5 × 1023 cm–3, and the temperature, T = 2 × 104 K. And solid lines label the present results; and dashed lines with upper triangles are the results of Ref. [2].

    图 3  在密度为8.1 g/cm3、不同温度下温稠密铝中, 采用多组分HNC近似给出不同价态离子(虚线)的径向分布与AAHNC模型(实线)计算结果的比较

    Fig. 3.  Different ion species pair distribution functions (dashed lines) of Al at density, 8.1 g/cm3, and different temperatures calculated by HNC approximation, comparing with that of AAHNC model (orange solid lines).

    图 4  密度为8.1 g/cm3、不同温度下温稠密铝等离子体中, 不同价态离子(虚线)、AAHNC模型计算(实线)的形状结构因子随着散射角度的变化.

    Fig. 4.  Form factor of different ion species (dashed lines) of Al at density, 8.1 g/cm3, and different temperatures, comparing with that of AAHNC (orange solid lines).

    图 5  在密度为8.1 g/cm3、温度10 eV下温稠密铝等离子体中, 离子结构随不同散射角的变化关系. Multi-ion表示本文使用的方法给出的计算结果(虚线); AAHNC表示AAHNC模型的计算结果(实线)[3]; QMD表示量子分子动力学计算结果(点-虚线)[24]; HNC表示文献[25]中采用HNC近似计算离子结构的结果(点线); 带有误差范围的点表示实验结果[26]

    Fig. 5.  Ion feature for Al as function of k at a temperature of 10 eV and a density of 8.1 g/cm3: Multi-ion (dashed line), AAHNC (solid line)[3], QMD (dot-dashed line)[24], HNC (dot line)[25] and experimental data (points with error bars)[26].

    表 1  在密度为8.1 g/cm3、不同温度下温稠密铝的离子丰度, A表示平均电离度

    Table 1.  Charge-state fractions of Al at density, 8.1 g/cm3, A is average charge state.

    100 eV价态A = 7.196丰度40 eV价态A = 4.28丰度20 eV价态A = 3.27丰度10 eV价态A = 3.007丰度
    4 0.016 2 0.001 2 0.003 2 0.001
    5 0.081 3 0.175 3 0.735 3 0.991
    6 0.212 4 0.438 4 0.251 4 0.008
    7 0.247 5 0.315 5 0.011
    8 0.290 6 0.067
    9 0.132 7 0.004
    10 0.021
    下载: 导出CSV
  • [1]

    Clérouin J, Arnault P, Gréa B J, Guisset S, Vandenboomgaerde M, White A J, Collins L A, Kress J D, Ticknor C 2020 Phys. Rev. E 101 033207Google Scholar

    [2]

    Wünsch K, Hilse P, Schlanges M, Gericke D.O 2008 Phys. Rev. E 77 056404Google Scholar

    [3]

    Hou Y, Bredow R, Yuan J M, Redmer R 2015 Phys. Rev. E 91 033114

    [4]

    Daligault J, Baalrud S D, Starrett C E, SaumonD, Sjostrom T 2016 Phys. Rev. Lett. 116 075002Google Scholar

    [5]

    马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军 2017 物理学报 66 036401Google Scholar

    Ma G C, Zhang Q L, Song H Z, Li Q, Zhu X R, Meng X J 2017 Acta Phys. Sin. 66 036401Google Scholar

    [6]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001

    [7]

    Desjarlais M P 2003 Phys. Rev. B 68 064204Google Scholar

    [8]

    Kuhne T D, Krack M, Mohamed F R, Parrinello M 2007 Phys. Rev. Lett. 98 066401Google Scholar

    [9]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [10]

    Zérah G, Clérouin J, Pollock E L 1992 Phys. Rev. Lett. 69 446Google Scholar

    [11]

    Fu Y S, Hou Y, Kang D D, Gao C, Jin F T, Yuan J M 2018 Phys. Plasmas 25 012701Google Scholar

    [12]

    Bredow R, Bornath T, Kraeft W D, Redmer R 2013 Contrib. Plasma Phys. 53 276Google Scholar

    [13]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (Oxford : Oxford University Press) pp54−55

    [14]

    Tanaka S 2016 J. Chem. Phys. 145 214104Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys 86 675

    [16]

    王天浩, 王坤, 张阅, 姜林村 2020 物理学报 69 099101Google Scholar

    Wang T H, Wang K, Zhang Y, Jiang L C 2020 Acta Phys. Sin. 69 099101Google Scholar

    [17]

    Brush S G, Sahlin H L, Teller E 1966 J. Chem. Phys. 45 2102Google Scholar

    [18]

    Deutsch C 1977 Phys. Lett. A 60 317Google Scholar

    [19]

    Schwarz V, Bornath T, Kraeft W D, Glenzer S H, Höll A, Redmer R 2007 Contrib. Plasma Phys. 47 324Google Scholar

    [20]

    Kelbg G 1964 Ann. Phys. 13 354

    [21]

    Chihara J 2000 J. Phys. Condens. Matter 12 231Google Scholar

    [22]

    Wünsch K, Vorberger J, Gregorz G, Gericke D O 2011 EPL 94 25001Google Scholar

    [23]

    Iglesias C A 2018 High Energy Density Phys. 26 81Google Scholar

    [24]

    Rüter H R, Redmer R 2014 Phys. Rev. Lett. 112 145007Google Scholar

    [25]

    Souza A N, Perkins D J, Starrett C E, Saumon D, Hansen S B 2014 Phys. Rev. E 89 023108Google Scholar

    [26]

    Ma T, Döppner T, Falcone R W, Fletcher L, Fortmann C, Gericke D O, Landen O L, Lee H J, Pak A, Vorberger J, Wünsch K, Glenzer S H 2013 Phys. Rev. Lett. 110 065001Google Scholar

    [27]

    Clérouin J, Robert G, Arnault P 2015 Phys. Rev. E 91 011101(RGoogle Scholar

    [28]

    Hou Y, Fu Y S, Bredow R, Kang D D, Redmer R, Yuan J M 2017 High Energy Density Phys. 22 21Google Scholar

  • [1] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [2] 赵岫鸟, 杜文青. 基于色散光学模型的40Ca核子散射数据计算. 物理学报, 2023, 72(22): 222401. doi: 10.7498/aps.72.20231054
    [3] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究. 物理学报, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [4] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [5] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究. 物理学报, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [8] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [9] 张计才, 朱遵略, 孙金锋. 超冷钠原子弹性散射特性的精确计算. 物理学报, 2013, 62(1): 013401. doi: 10.7498/aps.62.013401
    [10] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [11] 张计才, 朱遵略, 孙金锋. 超冷温度下钾和铯原子间弹性散射特性的精确计算. 物理学报, 2012, 61(9): 093401. doi: 10.7498/aps.61.093401
    [12] 马引群, 马中玉. 6Li与核弹性散射的微观光学势. 物理学报, 2008, 57(1): 74-81. doi: 10.7498/aps.57.74
    [13] 韩甫田, 郭立平, 刘平安, 唐振方, 施其宏. 半结晶聚酯(PET)的二相共存结构的表征. 物理学报, 2001, 50(6): 1132-1138. doi: 10.7498/aps.50.1132
    [14] 任廷琦, 柳盛典, 张庆刚, 张怿慈. Ar+N2体系在长势域上转动非弹性散射的Opacity函数. 物理学报, 1994, 43(9): 1413-1418. doi: 10.7498/aps.43.1413
    [15] 陈济舟, 王俊桥, 韩甫田. 取向对径向分布函数的影响. 物理学报, 1994, 43(7): 1105-1110. doi: 10.7498/aps.43.1105
    [16] 李少甫, 刘强, 徐向东, 钱青, 陈学俊. 多重散射展开方法应用于正电子-氢原子的弹性散射角分布的计算. 物理学报, 1993, 42(6): 911-917. doi: 10.7498/aps.42.911
    [17] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算. 物理学报, 1993, 42(6): 905-910. doi: 10.7498/aps.42.905
    [18] 蔡树芝, 牟季美, 张立德, 程本培. 纳米非晶氮化硅键态结构的X射线径向分布函数研究. 物理学报, 1992, 41(10): 1620-1626. doi: 10.7498/aps.41.1620
    [19] 魏文铎. 非晶态物质径向分布函数测定的最大熵方法. 物理学报, 1986, 35(2): 171-176. doi: 10.7498/aps.35.171
    [20] 金星南. 高能电子对原子核弹性散射的一个近似计算法. 物理学报, 1956, 12(5): 447-458. doi: 10.7498/aps.12.447
计量
  • 文章访问数:  4969
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 修回日期:  2020-12-30
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回