-
受密度及温度等环境效应影响, 温稠密物质的电子结构显著变化, 其理论描述非常复杂, 精密实验数据亦非常缺乏. 本文通过发展主动探测的X 射线荧光光谱方法, 从实验上定量研究了密度效应对温稠密物质电子结构的影响, 有助于深入理解温稠密物质的电子结构变化, 并为相关理论模型提供实验验证. 在万焦耳激光装置上, 设计特殊构型黑腔加载约2 倍固体密度、2 eV的Ti样品. 利用激光辐照V产生的热发射线泵浦Ti的荧光, 并采用高效高分辨的晶体谱仪诊断样品的X射线荧光光谱. 实验结果显示, 2倍固体密度Ti样品荧光谱线
${\mathrm{K}}_{\text{β}} $ 与$ {\mathrm{K}}_{\text{α}} $ 的能量差($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$ )相对于冷样品红移约2 eV. 理论上采用两种方法进行计算并与实验结果比较, 其中有限温度相对论密度泛函方法高估了密度效应对谱线移动的影响, 而“two-step Hartree-Fock-Slater”方法低估了密度效应的影响.Warm dense matter (WDM), a kind of transition state of matter between cold condensed matter and high temperature plasma, is one of the main research objects of high energy density physics (HEDP). Compared with the structure of isolated atom, the electron structure of WDM will change significantly because of the influences of density and temperature effect. As WDM is always strongly coupled and partly degenerate, accurate theoretical description is very complicated and the accurate experimental research is also very challenging. In this paper, the density effect on the warm dense matter electron structure based on the X-ray fluorescence spectroscopy is studied. The warm dense titanium with density larger than solid density is produced experimentally based on a specially designed hohlraum. Then, the titanium is pumped to emit fluorescence by using the characteristic line spectrum emitted by the laser irradiating the pump material (Vanadium). The X-ray fluorescence spectra of titanium with different states are diagnosed by changing the delay time between the pump laser and drive laser. The experimental fluorescence spectrum indicates that the difference in energy between${\mathrm{K}}_{\text{β}} $ and$ {\mathrm{K}}_{\text{α}} $ ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$ ) of the compressed titanium (7.2–9.2 g/cm3, 1.6–2.4 eV) is about 2 eV smaller than that of cold titanium. Two theoretical methods, i.e. finite-temperature relativistic density functional theory (FTRDFT) and two-step Hartree-Fock-Slater (TSHFS), are used to calculate the fluorescence spectrum of warm dense titanium. The calculated results indicate that the energy difference ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}} $ ) decreases with the increase of density but changes slowly with the increase of temperature during the calculated state (4.5–13.5 g/cm3, 0.03–5 eV). The FTRDFT overestimates the density effect on the line shift, while TSHFS underestimates the density effect. The future work will focus on optimizing the experimental method of X-ray fluorescence spectroscopy, obtaining X-ray fluorescence spectrum of titanium with more states, and then testing the theoretical method for warm dense matter.[1] Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar
[4] Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar
[5] Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar
[6] Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar
[7] Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar
[8] Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar
[9] Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar
[10] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar
Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar
[11] Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar
[12] Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar
[13] Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar
[14] Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar
[15] Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar
[16] Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar
[17] Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar
[18] Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar
[19] Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar
[20] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar
[21] Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar
[22] DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar
[23] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar
[24] Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar
[25] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar
[26] Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar
[27] Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar
[28] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar
[29] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar
[30] Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar
[31] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar
[32] Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar
[33] Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar
[34] Lin C L 2019 Phys. Plasmas 26 122707Google Scholar
-
-
[1] Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar
[4] Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar
[5] Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar
[6] Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar
[7] Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar
[8] Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar
[9] Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar
[10] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar
Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar
[11] Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar
[12] Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar
[13] Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar
[14] Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar
[15] Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar
[16] Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar
[17] Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar
[18] Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar
[19] Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar
[20] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar
[21] Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar
[22] DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar
[23] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar
[24] Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar
[25] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar
[26] Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar
[27] Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar
[28] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar
[29] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar
[30] Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar
[31] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar
[32] Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar
[33] Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar
[34] Lin C L 2019 Phys. Plasmas 26 122707Google Scholar
计量
- 文章访问数: 2019
- PDF下载量: 83
- 被引次数: 0