搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算

崔洋 李静 张林

引用本文:
Citation:

外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算

崔洋, 李静, 张林

Electronic structure of graphene nanoribbons under external electric field by density functional tight binding

Cui Yang, Li Jing, Zhang Lin
PDF
HTML
导出引用
  • 采用基于密度泛函理论的紧束缚方法计算研究了外加横向电场对边缘未加氢/加氢钝化的扶手椅型石墨烯纳米带的电子结构及电子布居数的影响. 计算结果表明, 石墨烯纳米带的能隙变化受其宽带影响. 当施加沿其宽度方向的横向外加电场时, 纳米带的能带结构及态密度都会产生较大的变化. 对于具有半导体性的边缘未加氢纳米带, 随着所施加电场强度的增加, 会发生半导体-金属的转变. 同时, 电场也会对能级分布产生显著影响. 外加电场导致纳米带内原子上电子布居数分布失去对称性, 电场强度越大, 其布居数不对称性越明显. 边缘加氢钝化可以显著改变纳米带内原子上的布居数分布.
    In recent years, the rapid development of electronic information technology has brought tremendous convenience to people’s lives, and the devices used have become increasingly miniaturized. However, due to the constraints of the process and the material itself, as the size of the devices made of silicon materials is further reduced, obvious short channel effects and dielectric tunneling effects will appear, which will affect the normal operations of these devices. In order to overcome this development bottleneck, it is urgent to find new materials for the devices that can replace silicon. Carbon has the same outer valence electron structure as silicon. Since 2004, Geim [Novoselov K S, Geim A K, Morozov S V, et al. 2005 Nature 438 197] prepared two-dimensional graphene with a honeycomb-like planar structure formed by sp2 hybridization, graphene has received extensive attention from researchers and industrial circles for its excellent electronic and mechanical properties. However, graphene is not a true semiconductor, and it has no band gap in its natural state. The energy gap can be opened by preparing graphene nanoribbons. On this basis, the electronic structure of the nanoribbons can be further controlled by using an external electric field to destroy the symmetric structure of the nanoribbons. In this paper, the tight-binding method based on density functional theory is used to calculate and study the influence of external transverse electric field on the electronic structure and electron population of un-hydrogenated/hydrogenated armchair graphene nanoribbons. The calculation results show that whether there is hydrogen on the edge of the graphene nanoribbons or not, the energy gap changed at the Г point shows a three-group periodic oscillation decreasing law, and as N increases, the energy gap will disappear. Under the external electric field, the band structure and the density of states of the nanoribbons will change greatly. For un-hydrogenated nanoribbons with semiconducting properties, as the intensity of the external electric field increases, a semiconductor-metal transition occurs. At the same time, the electric field will also have a significant influence on the energy level distribution, resulting in significant changes in the peak height and peak position of the density of states. The external electric field causes the electron population distribution on the atoms in the nanoribbons to break its symmetry. The greater the electric field strength, the more obvious the population asymmetry is. The edge hydrogenation passivation can significantly change the population distribution of atoms in nanoribbons.
      通信作者: 张林, zhanglin@imp.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51671051)和国家重点研发计划(批准号: 2016YFB0701304)资助的课题
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671051) and the National Key R&D Program of China (Grant No. 2016YFB0701304)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [7]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [8]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [9]

    Huang B, Yan Q M, Li Z Y, Duan W H 2009 Front. Phys. China 4 269Google Scholar

    [10]

    Wang G 2012 Chem. Phys. Lett. 533 74Google Scholar

    [11]

    Barone, Verónica, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [12]

    Jaiswal M, Haley Y X L C, Bao Q 2011 ACS Nano 5 888Google Scholar

    [13]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [14]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022Google Scholar

    [15]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177Google Scholar

    [16]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802Google Scholar

    [17]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Müllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930Google Scholar

    [18]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380Google Scholar

    [19]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [20]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187Google Scholar

    [21]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983Google Scholar

    [22]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170Google Scholar

    [23]

    王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 07310Google Scholar

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 07310Google Scholar

    [24]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111Google Scholar

    [25]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [26]

    杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起 2018 物理学报 67 223101Google Scholar

    Du J B, Feng Z F, Han L J, Tang Y L, Wu D Q 2018 Acta Phys. Sin. 67 223101Google Scholar

    [27]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [28]

    徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104Google Scholar

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104Google Scholar

    [29]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [30]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [31]

    Chang C P, Huang Y C, Lu C L, Ho J H, Li T S, Lin M F 2006 Carbon 44 508Google Scholar

    [32]

    Chen S C, Chang C P, Lee C H, Lin M F 2010 J. Appl. Phys. 107 4579Google Scholar

    [33]

    Wu L J, Zhang L, Qi Y 2017 Sci. Adv. Mater. 9 1775Google Scholar

    [34]

    Wu L J, Zhang L, Shen L H 2018 Appl. Surf. Sci. 447 22Google Scholar

    [35]

    Wu L J, Dong Y, Springborg M, Zhang L, Yang Qi 2015 Comp. Theo. Chem. 1074 185Google Scholar

    [36]

    Wu L J, Xu X M, Zhang L, Qi Y 2019 Superlattice Microst. 135 106261Google Scholar

    [37]

    吴丽君, 随强涛, 张多, 张林, 祁阳 2015 物理学报 64 42102Google Scholar

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta. Phys. Sin. 64 42102Google Scholar

    [38]

    Hourahine B, Aradi B, Blum V, et al. 2020 J. Chem. Phys. 152 124101Google Scholar

    [39]

    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260Google Scholar

    [40]

    Witek H, Irle S, Morokuma K 2004 J. Chem. Phys. 121 5163Google Scholar

    [41]

    Mulliken R S 2004 J. Chem. Phys. 23 1841Google Scholar

    [42]

    Elstner M 1998 Ph. D. Dissertation (Germany: University of Paderborn)

    [43]

    Raza H, Kan E C 2008 Phys. Rev. B 77 245434Google Scholar

  • 图 1  (a) N = 5的未加氢钝化的纳米带; (b) N = 5的氢钝化的纳米带

    Fig. 1.  (a) Un-hydrogenated nanoribbons with N = 5; (b) hydrogenated nanoribbons with N = 5.

    图 2  不同宽度的氢化/未氢化的扶手椅型石墨烯纳米带在Г点处的能隙

    Fig. 2.  Energy gap of hydrogenated/un-hydrogenated armchair graphene nanoribbons with different widths.

    图 3  N = 5的未加氢钝化的纳米带的带隙随电场强度的变化

    Fig. 3.  Band gap of un-hydrogenated nanoribbons with N = 5 under different electric field intensity.

    图 4  不同电场强度时N = 5的未加氢钝化的纳米带的能带结构及态密度 (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm

    Fig. 4.  Band structure and density of states of un-hydrogenated nanoribbons with N = 5 under the external electric field: (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm

    图 5  不同电场强度时N = 5的氢钝化的纳米带的能带结构及态密度 (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm

    Fig. 5.  Band structure and density of states of hydrogenated nanoribbons with N = 5 under the external electric field: (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm.

    图 6  不同电场强度下N = 5的未加氢钝化的纳米带的电子布居数 (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm

    Fig. 6.  The electron population of un-hydrogenated nanoribbon with N = 5 under the external electric field: (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm.

    图 7  不同电场强度下N = 5的氢钝化的纳米带的电子布居数 (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm

    Fig. 7.  The electron population of hydrogenated nanoribbon with N = 5 under the external electric field: (a) E = 0 V/nm; (b) E = 3 V/nm; (c) E = 5 V/nm.

    图 8  N = 5的未加氢钝化/加氢钝化的纳米带最大最小布居数之差随电场强度的变化

    Fig. 8.  The difference between the maximum and minimum populations of the un-hydrogenated/hydrogenated nanoribbons with N = 5 varies with the electric field intensity.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [7]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [8]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [9]

    Huang B, Yan Q M, Li Z Y, Duan W H 2009 Front. Phys. China 4 269Google Scholar

    [10]

    Wang G 2012 Chem. Phys. Lett. 533 74Google Scholar

    [11]

    Barone, Verónica, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [12]

    Jaiswal M, Haley Y X L C, Bao Q 2011 ACS Nano 5 888Google Scholar

    [13]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [14]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022Google Scholar

    [15]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177Google Scholar

    [16]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802Google Scholar

    [17]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Müllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930Google Scholar

    [18]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380Google Scholar

    [19]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [20]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187Google Scholar

    [21]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983Google Scholar

    [22]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170Google Scholar

    [23]

    王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 07310Google Scholar

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 07310Google Scholar

    [24]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111Google Scholar

    [25]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [26]

    杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起 2018 物理学报 67 223101Google Scholar

    Du J B, Feng Z F, Han L J, Tang Y L, Wu D Q 2018 Acta Phys. Sin. 67 223101Google Scholar

    [27]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [28]

    徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104Google Scholar

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104Google Scholar

    [29]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [30]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [31]

    Chang C P, Huang Y C, Lu C L, Ho J H, Li T S, Lin M F 2006 Carbon 44 508Google Scholar

    [32]

    Chen S C, Chang C P, Lee C H, Lin M F 2010 J. Appl. Phys. 107 4579Google Scholar

    [33]

    Wu L J, Zhang L, Qi Y 2017 Sci. Adv. Mater. 9 1775Google Scholar

    [34]

    Wu L J, Zhang L, Shen L H 2018 Appl. Surf. Sci. 447 22Google Scholar

    [35]

    Wu L J, Dong Y, Springborg M, Zhang L, Yang Qi 2015 Comp. Theo. Chem. 1074 185Google Scholar

    [36]

    Wu L J, Xu X M, Zhang L, Qi Y 2019 Superlattice Microst. 135 106261Google Scholar

    [37]

    吴丽君, 随强涛, 张多, 张林, 祁阳 2015 物理学报 64 42102Google Scholar

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta. Phys. Sin. 64 42102Google Scholar

    [38]

    Hourahine B, Aradi B, Blum V, et al. 2020 J. Chem. Phys. 152 124101Google Scholar

    [39]

    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260Google Scholar

    [40]

    Witek H, Irle S, Morokuma K 2004 J. Chem. Phys. 121 5163Google Scholar

    [41]

    Mulliken R S 2004 J. Chem. Phys. 23 1841Google Scholar

    [42]

    Elstner M 1998 Ph. D. Dissertation (Germany: University of Paderborn)

    [43]

    Raza H, Kan E C 2008 Phys. Rev. B 77 245434Google Scholar

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性. 物理学报, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [4] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [8] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究. 物理学报, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [9] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [10] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [11] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [12] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [13] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [15] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [16] 徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐. LiF分子在外电场中的物理性质研究. 物理学报, 2012, 61(9): 093102. doi: 10.7498/aps.61.093102
    [17] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [18] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [19] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [20] 徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和. 外电场作用下SiO电子结构特性研究. 物理学报, 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
计量
  • 文章访问数:  7654
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 修回日期:  2020-10-25
  • 上网日期:  2021-02-22
  • 刊出日期:  2021-03-05

/

返回文章
返回