搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性

李亚莎 谢云龙 黄太焕 徐程 刘国成

引用本文:
Citation:

基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性

李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成

Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory

Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng
PDF
导出引用
  • 交联聚乙烯是主要的高压电缆绝缘材料.为了研究外电场对盐交联分子结构的影响,本文对Zn原子使用def2-TZVP基组,C,H,O原子使用6-31G(d)基组,运用明尼苏达密度泛函(M06-2X)对交联聚乙烯分子进行优化得到了它的稳定结构.并研究了不同外电场(00.020 a.u.,1 a.u.=5.1421011 V/m)作用下盐交联聚乙烯分子结构和能量变化,外电场对前线轨道的能级和成分的影响,原子之间的键级、断键和红光光谱的变化.研究结果表明:随着电场的增大,交联聚乙烯分子从空间网状结构逐渐变成线性结构,总能量降低,但势能增大,偶极矩和极化率升高,交联聚乙烯分子的稳定性随着电场的增大而降低;最高占据轨道能级持续增大,最低空轨道能级从0.011 a.u.电场开始持续降低,能隙持续降低,临界击穿场强为11.16 GV/m;沿电场方向聚乙烯链端表现出亲核反应活性,它的CC键更容易断裂,形成甲基碳负离子,逆电场方向聚乙烯链端表现出亲电反应活性,它的CH键更容易断裂形成H正离子;分子红外光谱高频区吸收峰明显红移,低频区吸收峰既有红移又有蓝移.
    Cross-linked polyethylene is the main power cable insulation material and is widely used in high voltage cables. In order to study the effect of external electric field on the molecular structure of salt cross-linked polyethylene, in this paper we use the basis set of def2-TZVP for Zn atom, uses the basis set of 6-31(d) for C, H, O atoms, and uses the Minnesota density functional (M06-2X) to optimize the molecular structure of salt cross-linked polyethylene, then we obtain the stable structure of its ground state. On this basis, the molecular structure, total energy, kinetic energy, potential energy, dipole moment and polarizability changes of salt cross-linked polyethylene under the action of different external electric fields (from 0 to 0.020 a.u.) are studied by the same method. The influence of external electric field on energy level, energy gap, orbital distribution and composition of frontier orbit are studied. And the effect of external electric field on bond level, breaking bond and infrared spectrum of atoms are also discussed. The research results show that as the external electric field intensity increases, the cross-linked polyethylene molecule is gradually transformed from the spatial network structure into a linear structure, and the total energy and kinetic energy of the molecule are reduced, but its potential energy, dipole moment and polarizability are gradually increased. The highest occupied molecular orbital energy level increases with the increase of external electric field intensity. The lowest unoccupied molecular orbital energy level starts to decrease continuously from the electric field intensity of 0.011 a.u. (1 a.u. = 5:1421011 V/m), the energy gap decreases continuously, and the critical breakdown field intensity is 11.16 GV/m. With the external electric field increasing dramatically, the highest occupied molecular orbital is obviously converged at chain end in the direction of inverse electric field. Its orbital composition is more than 60%, contributed by the C atom of methyl group in the polyethylene terminal. The molecular polyethylene chain end of the inverse electric field direction exhibits an electrophilic reactivity, and C atoms are more likely to lose electrons. The Mayer bond order value of the CC bond decreases gradually, which leads the CC bonds to break more easily, and thus forming the methyl carbon negative ions. The lowest unoccupied molecular orbital moves along the electric field direction and is converged at the other end of polyethylene chain, nearly 80% of its orbital composition is contributed by the methyl of polyethylene chain end. The molecule shows a nucleophilic reactivity at the polyethylene end along the electric field direction, methyl is easier to obtain the electrons. The Mayer bond order value of the CH bond decreases gradually, and it brings about the CH bond more likely to break into H positive ions. The infrared absorption peaks of polyethylene chains are mainly concentrated in the high frequency region. With the increase of electric field intensity, the red shift occurs and the bond energy of polyethylene chain decreases. The infrared absorption peak of the cross-linked salt bridge is mainly concentrated in the low frequency area. Although there are both red shift and blue shift, the effect of red shift is more obvious, and the energy of the whole salt bridge decreases. From the variation of molecular potential energy, energy gap and Mayer bond order value, it is found that the stability of salt cross-linked polyethylene molecular system decreases with the increase of external electric field intensity.
      通信作者: 李亚莎, liyasha@ctgu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51577105)资助的课题.
      Corresponding author: Li Ya-Sha, liyasha@ctgu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105).
    [1]

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]

    [2]

    Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]

    [3]

    Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]

    [4]

    Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]

    [5]

    Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261

    [6]

    Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778

    [7]

    Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162

    [8]

    Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704

    [9]

    Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854

    [10]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [11]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [12]

    Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]

    [13]

    Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]

    [14]

    Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]

    [15]

    Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]

    [16]

    Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]

    [17]

    Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]

    [18]

    Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209

    [19]

    Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]

    [20]

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]

    [21]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]

    [22]

    Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 物理学报 66 056501]

    [23]

    Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 物理学报 66 087201]

    [24]

    Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]

    [25]

    Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]

    [26]

    Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]

    [27]

    Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 物理学报 65 143101]

    [28]

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102]

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191

    [30]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72

    [31]

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]

    [32]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [33]

    Lu T, Chen F W 2013 Phys. Chem. A 117 3100

  • [1]

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]

    [2]

    Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]

    [3]

    Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]

    [4]

    Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]

    [5]

    Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261

    [6]

    Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778

    [7]

    Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162

    [8]

    Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704

    [9]

    Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854

    [10]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [11]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [12]

    Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]

    [13]

    Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]

    [14]

    Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]

    [15]

    Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]

    [16]

    Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]

    [17]

    Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]

    [18]

    Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209

    [19]

    Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]

    [20]

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]

    [21]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]

    [22]

    Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 物理学报 66 056501]

    [23]

    Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 物理学报 66 087201]

    [24]

    Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]

    [25]

    Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]

    [26]

    Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]

    [27]

    Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 物理学报 65 143101]

    [28]

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102]

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191

    [30]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72

    [31]

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]

    [32]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [33]

    Lu T, Chen F W 2013 Phys. Chem. A 117 3100

  • [1] 王江琼, 李维康, 张文业, 万宝全, 查俊伟. 电缆绝缘材料交联聚乙烯的老化及寿命调控. 物理学报, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [8] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [9] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [10] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [12] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [13] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [14] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [15] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响. 物理学报, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [16] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [17] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [18] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [19] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  7076
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-06-09
  • 刊出日期:  2019-09-20

/

返回文章
返回