-
交联聚乙烯是主要的高压电缆绝缘材料.为了研究外电场对盐交联分子结构的影响,本文对Zn原子使用def2-TZVP基组,C,H,O原子使用6-31G(d)基组,运用明尼苏达密度泛函(M06-2X)对交联聚乙烯分子进行优化得到了它的稳定结构.并研究了不同外电场(00.020 a.u.,1 a.u.=5.1421011 V/m)作用下盐交联聚乙烯分子结构和能量变化,外电场对前线轨道的能级和成分的影响,原子之间的键级、断键和红光光谱的变化.研究结果表明:随着电场的增大,交联聚乙烯分子从空间网状结构逐渐变成线性结构,总能量降低,但势能增大,偶极矩和极化率升高,交联聚乙烯分子的稳定性随着电场的增大而降低;最高占据轨道能级持续增大,最低空轨道能级从0.011 a.u.电场开始持续降低,能隙持续降低,临界击穿场强为11.16 GV/m;沿电场方向聚乙烯链端表现出亲核反应活性,它的CC键更容易断裂,形成甲基碳负离子,逆电场方向聚乙烯链端表现出亲电反应活性,它的CH键更容易断裂形成H正离子;分子红外光谱高频区吸收峰明显红移,低频区吸收峰既有红移又有蓝移.Cross-linked polyethylene is the main power cable insulation material and is widely used in high voltage cables. In order to study the effect of external electric field on the molecular structure of salt cross-linked polyethylene, in this paper we use the basis set of def2-TZVP for Zn atom, uses the basis set of 6-31(d) for C, H, O atoms, and uses the Minnesota density functional (M06-2X) to optimize the molecular structure of salt cross-linked polyethylene, then we obtain the stable structure of its ground state. On this basis, the molecular structure, total energy, kinetic energy, potential energy, dipole moment and polarizability changes of salt cross-linked polyethylene under the action of different external electric fields (from 0 to 0.020 a.u.) are studied by the same method. The influence of external electric field on energy level, energy gap, orbital distribution and composition of frontier orbit are studied. And the effect of external electric field on bond level, breaking bond and infrared spectrum of atoms are also discussed. The research results show that as the external electric field intensity increases, the cross-linked polyethylene molecule is gradually transformed from the spatial network structure into a linear structure, and the total energy and kinetic energy of the molecule are reduced, but its potential energy, dipole moment and polarizability are gradually increased. The highest occupied molecular orbital energy level increases with the increase of external electric field intensity. The lowest unoccupied molecular orbital energy level starts to decrease continuously from the electric field intensity of 0.011 a.u. (1 a.u. = 5:1421011 V/m), the energy gap decreases continuously, and the critical breakdown field intensity is 11.16 GV/m. With the external electric field increasing dramatically, the highest occupied molecular orbital is obviously converged at chain end in the direction of inverse electric field. Its orbital composition is more than 60%, contributed by the C atom of methyl group in the polyethylene terminal. The molecular polyethylene chain end of the inverse electric field direction exhibits an electrophilic reactivity, and C atoms are more likely to lose electrons. The Mayer bond order value of the CC bond decreases gradually, which leads the CC bonds to break more easily, and thus forming the methyl carbon negative ions. The lowest unoccupied molecular orbital moves along the electric field direction and is converged at the other end of polyethylene chain, nearly 80% of its orbital composition is contributed by the methyl of polyethylene chain end. The molecule shows a nucleophilic reactivity at the polyethylene end along the electric field direction, methyl is easier to obtain the electrons. The Mayer bond order value of the CH bond decreases gradually, and it brings about the CH bond more likely to break into H positive ions. The infrared absorption peaks of polyethylene chains are mainly concentrated in the high frequency region. With the increase of electric field intensity, the red shift occurs and the bond energy of polyethylene chain decreases. The infrared absorption peak of the cross-linked salt bridge is mainly concentrated in the low frequency area. Although there are both red shift and blue shift, the effect of red shift is more obvious, and the energy of the whole salt bridge decreases. From the variation of molecular potential energy, energy gap and Mayer bond order value, it is found that the stability of salt cross-linked polyethylene molecular system decreases with the increase of external electric field intensity.
-
Keywords:
- cross-linked polyethylene /
- external electric field /
- density functional theory /
- reactivity
[1] He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]
[2] Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]
[3] Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]
[4] Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]
[5] Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261
[6] Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778
[7] Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162
[8] Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704
[9] Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854
[10] Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]
[11] Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]
[12] Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]
[13] Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]
[14] Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]
[15] Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]
[16] Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]
[17] Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]
[18] Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209
[19] Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]
[20] Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]
[21] Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]
[22] Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 物理学报 66 056501]
[23] Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 物理学报 66 087201]
[24] Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]
[25] Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]
[26] Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]
[27] Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 物理学报 65 143101]
[28] Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102]
[29] Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191
[30] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72
[31] Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]
[32] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
[33] Lu T, Chen F W 2013 Phys. Chem. A 117 3100
-
[1] He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]
[2] Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]
[3] Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]
[4] Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]
[5] Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261
[6] Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778
[7] Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162
[8] Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704
[9] Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854
[10] Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]
[11] Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]
[12] Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]
[13] Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]
[14] Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]
[15] Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]
[16] Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]
[17] Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]
[18] Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209
[19] Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]
[20] Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]
[21] Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]
[22] Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 物理学报 66 056501]
[23] Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 物理学报 66 087201]
[24] Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]
[25] Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]
[26] Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]
[27] Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 物理学报 65 143101]
[28] Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102]
[29] Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191
[30] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72
[31] Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]
[32] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
[33] Lu T, Chen F W 2013 Phys. Chem. A 117 3100
计量
- 文章访问数: 7636
- PDF下载量: 107
- 被引次数: 0