搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究

张翔宇 马英翔 徐春龙 丁健 全红娟 侯兆阳 石刚 秦宁 高当丽

引用本文:
Citation:

单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究

张翔宇, 马英翔, 徐春龙, 丁健, 全红娟, 侯兆阳, 石刚, 秦宁, 高当丽

Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals

Zhang Xiang-Yu, Ma Ying-Xiang, Xu Chun-Long, Ding Jian, Quan Hong-Juan, Hou Zhao-Yang, Shi Gang, Qin Ning, Gao Dang-Li
PDF
导出引用
  • 利用激光共聚焦显微镜系统研究了系列单颗粒NaYF4:Yb/Er微晶的上转换荧光强度、空间分布和动力学过程.结果表明:荧光强度和动力学过程不但依赖于样品的长径比,而且依赖于样品的具体制备途径.荧光强度和红色荧光寿命随样品长径比的增大而增大,在具有相同长径比的NaYF4:Yb/Er微米棒中,相比于调柠檬酸的量,调控pH制备的样品展示了更优异的上转换荧光特性.更有趣的是:不同样品的荧光图案展示了异向空间分布,暗示了其在编码和显示等领域的应用优势.荧光特性依赖于样品长径比和制备过程的物理机理被进一步研究和揭示:在微米晶体内,荧光强度主要依赖于样品的晶格内Na+缺陷的数量.该研究为高效上转换荧光材料的合成积累了数据,而NaYF4:Yb/Er微晶中红色荧光寿命对晶格缺陷更加敏感的特性也可能使其成为晶格结晶度的探针.
    In recent years, rare earth-doped upconversion (UC) micro/nanocrystals are useful for many applications, especially in biology because of their unique luminescent properties and specific geometry. The luminescence efficiency of lanthanide-doped UC nanoparticles is of particular importance for their applications. However, the unsatisfactory UC efficiency is still one of the main hurdles. In the present article, a series of Yb3+/Er3+ doped NaYF4 micro/nanoparticles with different ratios of length to diameter are successfully synthesized by a facile hydrothermal route. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) analyses, photoluminescence spectra, and the dynamic process of the luminescence are used to characterize the samples. The intrinsic structural feature of fluoride, the solution pH value, and organic additive Cit3- account for the ultimate shape evolution of the final products. The ratio of length to diameter of NaYF4 microrod can be tuned only by varying the value of pH or the amount of an organic additive (Cit3-). The UC characteristics of a single NaYF4:Yb3+/Er3+ microrod obtained by tuning the value of pH or the amount of Cit3- are investigated by laser confocal microscopy with a 980 nm laser. The two series of codoped fluoride crystals both exhibit the characteristic UC luminescence from Er3+ ions and display the rich luminescence patterns in space. The UC luminescence from a single NaYF4:Yb3+/Er3+ microrod obtained by tuning the value of pH is brighter than that from a single NaYF4:Yb3+/Er3+ microrod with the same size obtained by tuning the amount of Cit3-. The EDX analysis indicates that the number of Na+ defects depends on the specific synthesis conditions of the sample. The Na+ defects of samples obtained by tuning the values of pH are lower than those of samples with the same size obtained by tuning the amount of Cit3-. It conduces to reducing Na+ defects at lower pH value. The parameters of the luminescence kinetics are found to be unambiguously dependent on the size of sample, which relates to higher energy phonon of surface and Na+ defects. The mechanism of luminescence enhancement by pH controlling is explored, and a mechanism based on the reduced intrinsic defects of Na+ is proposed. The investigation not only enriches the controllable synthesis approach of fluoride micro/nanomaterials, but also indicates the potential applications of rare earth materials with a rich luminescence pattern in the photonic devices and anti-counterfeiting devices.
      通信作者: 张翔宇, xyzhang@chd.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604253,51771033)、中央高校基本科研业务费(批准号:310812171004,301812172001)、陕西省自然科学基础研究计划(批准号:2018JM1036)、陕西省青年科技新星项目(批准号:2015KJXX-33)、中国博士后科学基金(批准号:2015M570816)、2017年省级大学生创新创业训练计划(批准号:1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51771033), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 310812171004, 301812172001), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018JM1036), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the China Postdoctoral Science Foundation (Grant No. 2015M570816), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Luo Z, Ruan Q, Zhong M, Cheng Y, Yang R, Xu B, Xu H, Cai Z 2016 Opt. Lett. 41 2258

    [2]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [3]

    Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F 2016 Adv. Mater. 28 9341

    [4]

    Sun L, Wang Y, Yan C 2014 Acc. Chem. Res. 47 1001

    [5]

    Zhou J, Liu Q, Feng W, Sun Y, Li F 2015 Chem. Rev. 115 395

    [6]

    Bhaumik J, Mittal A K, Banerjee A, Chisti Y, Banerjee U C 2015 Nano Res. 8 1373

    [7]

    Fu J, Fu X, Wang C, Yang X, Zhuang J, Zhang G, Lai B, Wu M, Wang J 2013 Eur. J. Inorg. Chem. 2013 1269

    [8]

    Gao D, Zhang X, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C, Xu Z 2015 Sci. Rep. 5 12745

    [10]

    Gao D, Zhang X, Zhang J 2014 CrystEngComm 16 11115

    [11]

    Li S, Ye S, Chen X, Liu T, Guo Z, Wang D 2017 J. Rare Earth 35 753

    [12]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [13]

    Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L 2007 J. Phys. Chem. C 111 13611

    [14]

    Schietinger S, de Menezes L S, Lauritzen B, Benson O 2009 Nano Lett. 9 2477

    [15]

    Wang Z, Zeng S, Yu J, Ji X, Zeng H, Xin S, Wang Y, Sun L 2015 Nanoscale 7 9552

    [16]

    Suo H, Zhao X, Zhang Z, Li T, Goldys E M, Guo C 2017 Chem. Eng. J. 313 65

    [17]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [18]

    Lu E, Pichaandi J, Arnett L P, Tong L, Winnik M A 2017 J. Phys. Chem. C 121 18178

    [19]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese) [张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽 2016 物理学报 65 204205]

    [20]

    Zhou J, Qiu J 2016 J. Inorg. Mater. 31 1023 (in Chinese) [周佳佳, 邱建荣 2016 无机材料学报 31 1023]

    [21]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577

    [23]

    Ostrowski A D, Chan E M, Gargas D J, Katz E M, Han G, Schuck P J, Milliron D J, Cohen B E 2012 ACS Nano 6 2686

    [24]

    Mor F M, Sienkiewicz A, Forr L, Jeney S 2014 ACS Photon. 1 1251

    [25]

    Ma C, Xu X, Wang F, Zhou Z, Liu D, Zhao J, Guan M, Lang C I, Jin D 2017 Nano Lett. 17 2858

    [26]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [27]

    Gao D, Gao W, Shi P, Li L 2013 RSC Adv. 3 14757

    [28]

    Liang X, Wang X, Zhuang J, Peng Q, Li Y 2007 Adv. Funct. Mater. 17 2757

    [29]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [30]

    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X 2015 Chem. Soc. Rev. 44 1379

    [31]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [32]

    Tian D, Gao D, Chong B, Liu X 2015 Dalton Trans. 44 4133

    [33]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203]

    [34]

    Tu L, Liu X, Wu F, Zhang H 2015 Chem. Soc. Rev. 44 1331

    [35]

    Fischer S, Bronstein N D, Swabeck J K, Chan E M, Alivisatos A P 2016 Nano Lett. 16 7241

    [36]

    Sun T, Ma R, Qiao X, Fan X, Wang F 2016 ChemPhysChem 17 766

  • [1]

    Luo Z, Ruan Q, Zhong M, Cheng Y, Yang R, Xu B, Xu H, Cai Z 2016 Opt. Lett. 41 2258

    [2]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [3]

    Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F 2016 Adv. Mater. 28 9341

    [4]

    Sun L, Wang Y, Yan C 2014 Acc. Chem. Res. 47 1001

    [5]

    Zhou J, Liu Q, Feng W, Sun Y, Li F 2015 Chem. Rev. 115 395

    [6]

    Bhaumik J, Mittal A K, Banerjee A, Chisti Y, Banerjee U C 2015 Nano Res. 8 1373

    [7]

    Fu J, Fu X, Wang C, Yang X, Zhuang J, Zhang G, Lai B, Wu M, Wang J 2013 Eur. J. Inorg. Chem. 2013 1269

    [8]

    Gao D, Zhang X, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C, Xu Z 2015 Sci. Rep. 5 12745

    [10]

    Gao D, Zhang X, Zhang J 2014 CrystEngComm 16 11115

    [11]

    Li S, Ye S, Chen X, Liu T, Guo Z, Wang D 2017 J. Rare Earth 35 753

    [12]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [13]

    Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L 2007 J. Phys. Chem. C 111 13611

    [14]

    Schietinger S, de Menezes L S, Lauritzen B, Benson O 2009 Nano Lett. 9 2477

    [15]

    Wang Z, Zeng S, Yu J, Ji X, Zeng H, Xin S, Wang Y, Sun L 2015 Nanoscale 7 9552

    [16]

    Suo H, Zhao X, Zhang Z, Li T, Goldys E M, Guo C 2017 Chem. Eng. J. 313 65

    [17]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [18]

    Lu E, Pichaandi J, Arnett L P, Tong L, Winnik M A 2017 J. Phys. Chem. C 121 18178

    [19]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese) [张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽 2016 物理学报 65 204205]

    [20]

    Zhou J, Qiu J 2016 J. Inorg. Mater. 31 1023 (in Chinese) [周佳佳, 邱建荣 2016 无机材料学报 31 1023]

    [21]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577

    [23]

    Ostrowski A D, Chan E M, Gargas D J, Katz E M, Han G, Schuck P J, Milliron D J, Cohen B E 2012 ACS Nano 6 2686

    [24]

    Mor F M, Sienkiewicz A, Forr L, Jeney S 2014 ACS Photon. 1 1251

    [25]

    Ma C, Xu X, Wang F, Zhou Z, Liu D, Zhao J, Guan M, Lang C I, Jin D 2017 Nano Lett. 17 2858

    [26]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [27]

    Gao D, Gao W, Shi P, Li L 2013 RSC Adv. 3 14757

    [28]

    Liang X, Wang X, Zhuang J, Peng Q, Li Y 2007 Adv. Funct. Mater. 17 2757

    [29]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [30]

    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X 2015 Chem. Soc. Rev. 44 1379

    [31]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [32]

    Tian D, Gao D, Chong B, Liu X 2015 Dalton Trans. 44 4133

    [33]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203]

    [34]

    Tu L, Liu X, Wu F, Zhang H 2015 Chem. Soc. Rev. 44 1331

    [35]

    Fischer S, Bronstein N D, Swabeck J K, Chan E M, Alivisatos A P 2016 Nano Lett. 16 7241

    [36]

    Sun T, Ma R, Qiao X, Fan X, Wang F 2016 ChemPhysChem 17 766

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究. 物理学报, 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [3] 余学舟, 黄昌保, 吴海信, 胡倩倩, 刘国晋, 李亚, 朱志成, 祁华贝, 倪友保, 王振友. 基于实验参数的Dy3+, Na+: PbGa2S4中红外激光理论研究. 物理学报, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [4] 刘哲, 魏浩, 崔海航, 孙锴, 孙博华. 基于声子水动力学方程分析全环绕栅极晶体管的瞬态热输运过程. 物理学报, 2024, 73(14): 144401. doi: 10.7498/aps.73.20240491
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [7] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案. 物理学报, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [8] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性. 物理学报, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [9] 嘉明珍, 王红艳, 陈元正, 马存良. Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响. 物理学报, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [10] 孙彧, 杨春晖, 姜兆华, 孟祥彬. LiNbO3和LiTaO3晶体Er3+/Yb3+掺杂水热外延层室温吸收光谱分析. 物理学报, 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [11] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [12] 刘名扬, 孙维瑾. (Pr3+ ,Yb3+ )共掺氟化物玻璃上转换敏化发光. 物理学报, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [13] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数. 物理学报, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [14] 柴 路, 颜 石, 薛迎红, 刘庆文, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 共掺Na+的Yb3+∶CaF2晶体的荧光分析与低阈值激光运转. 物理学报, 2007, 56(6): 3553-3558. doi: 10.7498/aps.56.3553
    [15] 张 龙, 张军杰, 祁长鸿, 林凤英, 胡和方. 稀土离子掺杂的AlF3基氟化物玻璃. 物理学报, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [16] 金庆华, 冯少新, 郭振亚, 李宝会, 丁大同. 碱土氟化物离子晶体中点缺陷形成能计算. 物理学报, 1999, 48(7): 1261-1268. doi: 10.7498/aps.48.1261
    [17] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定. 物理学报, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [18] 常明, 孙伟, 邢金华, 王煜明. 模拟纳米晶体原子分布及X射线散射理论图案. 物理学报, 1997, 46(7): 1319-1325. doi: 10.7498/aps.46.1319
    [19] 王印月, 张仿清, 陈光华. 反应溅射制备a-SiGe:H薄膜中亚稳态热缺陷的研究. 物理学报, 1990, 39(10): 1661-1664. doi: 10.7498/aps.39.1661
    [20] 邢修三. 晶体中热缺陷的产生动力学. 物理学报, 1988, 37(4): 694-697. doi: 10.7498/aps.37.694
计量
  • 文章访问数:  6044
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-12-28
  • 刊出日期:  2019-09-20

/

返回文章
返回