-
基于非线性薛定谔方程建立了氟化物(ZrF4-BaF2-LaF3-AlF3-NaF, ZBLAN)光纤振荡器中产生中红外超短脉冲的理论模型, 在此基础上研究了中红外超短脉冲在氟化物光纤振荡器中形成的物理机理, 数值模拟了氟化物光纤振荡器中中红外超短脉冲的演化过程. 分析了腔内净色散和小信号增益系数对振荡器中锁模脉冲产生的影响, 并给出了参数设置范围. 研究发现: 当掺Er3+氟化物光纤长度, 小信号增益系数, 不饱和损耗为一定值时, 腔内净色散在一定范围内才会出现稳定的锁模脉冲, 且随着腔内净色散增加脉冲宽度变宽, 光谱变窄, 峰值功率降低; 当掺Er3+氟化物光纤长度及不饱和损耗一定, 腔内净色散量为合理值, 小信号增益系数在合理的范围时可以得到稳定的锁模脉冲, 且随着小信号增益系数的增加脉冲宽度变宽, 光谱变宽, 峰值功率增加.Fiber lasers show several advantages over other types of lasers. They are efficient, compact, and rugged since they require few bulk components and are virtually unaffected by the surrounding environment. Mode-locked mid-infrared (mid-IR) lasers are essential for a wide variety of applications. The promising applications of mode-locked fiber lasers at wavelengths near 3 m include combs generation (metrology), spectroscopic sensors, infrared countermeasures, laser surgery, high-efficient pump sources for longer-wavelength oscillators and mid-IR supercontinuum source pumping. Based on the nonlinear Schrdinger equation (NLSE), a theoretical model of passively mode-locked Er3+-doped fluoride fiber laser using a saturable absorber is set up. Some mechanisms for generating mid-IR ultrashort pulse in fiber lasers are investigated. When the dispersion of the cavity is managed properly, the numerical simulation mainly focuses on the evolution process of mid-IR ultrashort pulse in fluoride fiber oscillators. Influences of the intracavity net dispersion and the small-signal gain on the generation of mode-locked pulses are analyzed in detail. And the reasonable parameter windows are given. Just as the simulated results showed, for a case of 4 m Er3+-doped fluoride fiber, small-signal gain g0= 0.6 m-1 and unsaturated loss l0 = 0.7, the stable mode-locked pulses are achieved by tuning the net intracavity dispersion within a certain range from 0.72 ps2 to 0.83 ps2. As the net intracavity dispersion increases, the output pulse duration increases gradually, while the spectrum width (FWHM) and peak power decrease accordingly. In addition, for the case of 4 m Er3+-doped fluoride fiber, unsaturated loss l0 = 0.7 and net intracavity dispersion of 0.8 ps2, the stable mode-locked pulses can also be obtained by tuning the small-signal gain within a certain range from 0.55 to 0.70 m-1. As the small-signal gain increases, the output pulse duration, spectral width, and peak power increase gradually. This work may be beneficial to the design of experiments for achieving more narrow pulse duration, wide spectral width, and high peak power mid-infrared ultrashort pulse.
-
Keywords:
- fiber laser /
- mid-infrared /
- ultrashort pulse /
- fluorine fiber
[1] Wang P, Liu J 2013 Chin. J. Lasers 40 0601002 (in Chinese) [王 璞, 刘 江 2013 中国激光 40 0601002]
[2] Chen H, Li J F, Ou Z H, Yang Y, Chen M, Luo H Y, Wei T, Liu Y Z 2011 Lasers Optoelectron. Prog. 48 111402 (in Chinese) [陈昊, 李剑峰, 欧中华, 杨怡, 陈明, 罗鸿禹, 魏涛, 刘永智 2011 激光与光电子学进展 48 111402]
[3] Walsh B 2009 Laser Phys. 19 855
[4] Zhu F, Hundertmark H, Kolomenskii A A, Strohaber J, Holzwarth R, Schuessler H A 2011 Opt. Lett. 38 2360
[5] Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488
[6] Wei C, Zhu X S, Norwood R A, Peyghambarian N 2012 Opt. Lett. 37 3849
[7] Wang P, Yang L M, Liu J 2013 Opt. Express 21 1798
[8] Liu J, Wang P 2012 Chin. J. Lasers 39 0902001 (in Chinese) [刘江, 王璞 2012 中国激光 39 0902001]
[9] Renard W, Canat G, Bourdon P 2012 Opt. Lett. 37 377
[10] Yang W Q, Zhang B, Hou J, Yin K, Liu Z J 2014 Chin. Phys. B 23 054208
[11] Haboucha A, Fortin V, Bernier M, Genest J, Messaddeq Y, Valle R 2014 Opt. Lett. 39 3294
[12] Li J F, Hudson D D, Liu Y, Jackson S D 2012 Opt. Lett. 37 3747
[13] Hu T, Hudson D D, Jackson S D 2014 Opt. Lett. 39 2133
[14] Zhao Y Q, Zhu H Y, Liu J H, Sun D C, Li F M 1997 Acta Phys. Sin. 46 2174 (in Chinese) [赵应桥, 朱鹤元, 刘建华, 孙迭篪, 李富铭 1997 物理学报 46 2174]
[15] Cao W H, Zhang Y W, Liu S H, Guo Q, Xu W C 1997 Acta Phys. Sin. 46 919 (in Chinese) [曹文华, 张有为, 刘颂豪, 郭旗, 徐文成 1997 物理学报 46 919]
[16] Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 4731]
[17] Agrawal G P 2013 Nonlinear Fiber Optics Fifth Edition (London: Academic Press) pp57-59
-
[1] Wang P, Liu J 2013 Chin. J. Lasers 40 0601002 (in Chinese) [王 璞, 刘 江 2013 中国激光 40 0601002]
[2] Chen H, Li J F, Ou Z H, Yang Y, Chen M, Luo H Y, Wei T, Liu Y Z 2011 Lasers Optoelectron. Prog. 48 111402 (in Chinese) [陈昊, 李剑峰, 欧中华, 杨怡, 陈明, 罗鸿禹, 魏涛, 刘永智 2011 激光与光电子学进展 48 111402]
[3] Walsh B 2009 Laser Phys. 19 855
[4] Zhu F, Hundertmark H, Kolomenskii A A, Strohaber J, Holzwarth R, Schuessler H A 2011 Opt. Lett. 38 2360
[5] Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488
[6] Wei C, Zhu X S, Norwood R A, Peyghambarian N 2012 Opt. Lett. 37 3849
[7] Wang P, Yang L M, Liu J 2013 Opt. Express 21 1798
[8] Liu J, Wang P 2012 Chin. J. Lasers 39 0902001 (in Chinese) [刘江, 王璞 2012 中国激光 39 0902001]
[9] Renard W, Canat G, Bourdon P 2012 Opt. Lett. 37 377
[10] Yang W Q, Zhang B, Hou J, Yin K, Liu Z J 2014 Chin. Phys. B 23 054208
[11] Haboucha A, Fortin V, Bernier M, Genest J, Messaddeq Y, Valle R 2014 Opt. Lett. 39 3294
[12] Li J F, Hudson D D, Liu Y, Jackson S D 2012 Opt. Lett. 37 3747
[13] Hu T, Hudson D D, Jackson S D 2014 Opt. Lett. 39 2133
[14] Zhao Y Q, Zhu H Y, Liu J H, Sun D C, Li F M 1997 Acta Phys. Sin. 46 2174 (in Chinese) [赵应桥, 朱鹤元, 刘建华, 孙迭篪, 李富铭 1997 物理学报 46 2174]
[15] Cao W H, Zhang Y W, Liu S H, Guo Q, Xu W C 1997 Acta Phys. Sin. 46 919 (in Chinese) [曹文华, 张有为, 刘颂豪, 郭旗, 徐文成 1997 物理学报 46 919]
[16] Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 4731]
[17] Agrawal G P 2013 Nonlinear Fiber Optics Fifth Edition (London: Academic Press) pp57-59
计量
- 文章访问数: 6712
- PDF下载量: 206
- 被引次数: 0