-
研究了非线性放大环形镜锁模掺铒光纤激光器中多孤子和类噪声脉冲同时产生的演化特性. 当激光器运行在类噪声脉冲状态时, 单个孤子簇里包含着多个不同间距的脉冲, 同时相邻脉冲之间的脉冲间距均保持在数百皮秒的范围内, 说明多孤子脉冲之间存在较弱的相互作用力. 并且, 单个孤子簇中的总脉冲数随着抽运功率的增大而增加. 在最大的抽运功率时,单个孤子簇包络内部有8个脉冲. 此外, 利用时间拉伸色散傅里叶变换技术研究了这种类噪声多孤子脉冲的实时动力学演化特性, 研究表明类噪声脉冲状态下的多孤子脉冲中每个脉冲实际上都是由随机强度的噪声混沌波组成的. 这些研究结果将有助于深入理解类噪声脉冲的物理机制, 也将为探索其他复杂孤子动力学过程奠定基础.Dissipative solitons (DSs) usually play an important role in understanding the intricate phenomena in various nonlinear systems. As a special regime in the dissipative system, noise-like pulses (NLPs) can have typical characteristics of ultra-broad and smooth spectrum, high pulse energy and low temporal coherence, making them a good candidate for many applications, including supercontinuum generation, industrial micromachining and optical metrology. In this paper, a noteworthy observation concerning the dynamics on coexistence of the multiple solitons and NLPs operation in a net-normal-dispersion passively mode-locked fiber laser based on nonlinear amplifying loop mirror (NALM) is reported. In the experiment, the stable DSs can be easily obtained at a proper pump power. When appropriately increasing the pump power and changing the polarization state, the DS operation can change to the NLP regime. When the fiber laser operates in an NLP state, the single soliton bunch contains multiple pulses with different temporal spacings. And the temporal interval between the adjacent pulses is in a range of several hundred picoseconds, which decreases from left to right with time changing, indicating that there are long-distance interactions among these multiple pulses and they gradually become stronger and stronger. Besides, the pulse number of single soliton bunches on the NLP operation increases almost linearly with pump power increasing. At a maximum pump power, there are eight pulses inside the single soliton bunch. With the increase of pump power, the average output power and pulse energy of these multiple solitons in the NLP state increase. The maximum average output power and pulse energy are 12.3 mW and 1.65 nJ, respectively. In addition, the real-time dynamic evolution of these multiple solitons in the NLP state is investigated by using the time-stretch dispersive Fourier-transform method. The results show that all the pulses in NLP regime actually consist of chaotic noise waves with stochastic intensities. We believe that this paper will be of significance in studying ultrafast fiber lasers and nonlinear optics. Moreover, we hope that these findings will be helpful in understanding the physical mechanism of NLPs and paving the way for exploring other complex soliton dynamics.
[1] Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar
[3] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar
[4] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar
Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar
[5] Chang G, Wei Z 2020 iScience 23 101101Google Scholar
[6] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar
Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar
[7] Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar
[8] Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O, Steinberg H 2018 Phys. Rev. Lett. 121 133902Google Scholar
[9] Wei Z W, Liu M, Ming S X, Cui H, Luo A P, Xu W C, Luo Z C 2020 Opt. Lett. 45 531Google Scholar
[10] Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar
[11] Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar
[12] Liu J, Li X, Zhang S, Liu L, Yan D, Wang C 2021 Opt. Express 29 30494Google Scholar
[13] Lauterio-Cruz J P, Hernandez-Garcia J C, Pottiez O, Estudillo-Ayala J M, Kuzin E A, Rojas-Laguna R, Santiago-Hernandez H, Jauregui-Vazquez D 2016 Opt. Express 24 13778Google Scholar
[14] Özgören K, Öktem B, Yilmaz S, Ilday F Ö, Eken K 2011 Opt. Express 19 17647Google Scholar
[15] Keren S, Brand E, Levi Y, Levit B, Horowitz M 2002 Opt. Lett. 27 125Google Scholar
[16] Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar
[17] Jeong Y, Vazquez Zuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar
[18] 陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002Google Scholar
Chen J W, Zhao L M 2017 Laser Optoelectron. Prog. 54 110002Google Scholar
[19] 窦志远, 张斌, 刘帅林, 侯静 2020 物理学报 69 164202Google Scholar
Dou Z Y, Zhang B, Liu S L, Hou J 2020 Acta Phys. Sin. 69 164202Google Scholar
[20] Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar
[21] Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y, Zhao W 2009 Opt. Express 17 8506Google Scholar
[22] Sobon G, Krzempek K, Kaczmarek P, Abramski K M, Nikodem M 2011 Opt. Commun. 284 4203Google Scholar
[23] Wang Y, Mao D, Gan X, Han L, Ma C, Xi T, Zhang Y, Shang W, Hua S, Zhao J 2015 Opt. Express 23 205Google Scholar
[24] Wu X, Tang D Y, Luan X N, Zhang Q 2011 Opt. Commun. 284 3615Google Scholar
[25] Huang Y Q, Hu Z A, Cui H, Luo Z C, Luo A P, Xu W C 2016 Opt. Lett. 41 4056Google Scholar
[26] Cheng Z, Li H, Wang P 2015 Opt. Express 23 5972Google Scholar
[27] Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2018 Laser Phys. Lett. 15 055101Google Scholar
[28] Liu M, Luo A P, Xu W C, Luo Z C 2016 Opt. Lett. 41 3912Google Scholar
[29] Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2017 Chin. Opt. Lett. 15 080605Google Scholar
[30] Wang Z, Wang X, Song Y, Liu J, Zhang H 2020 Phys. Rev. A 101 013825Google Scholar
[31] Zaviyalov A, Grelu P, Lederer F 2012 Opt. Lett. 37 175Google Scholar
[32] Lecaplain C, Grelu P 2014 Phys. Rev. A 90 013805Google Scholar
[33] Wang Z, Ma C, Song Y, Liu J, Zhu H, Duan Y, Zhang H 2020 Opt. Express 28 39463Google Scholar
[34] Solli D R, Herink G, Jalali B, Ropers C 2012 Nat. Photonics 6 463Google Scholar
[35] Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755Google Scholar
[36] Gao L, Zhu T, Wabnitz S, Liu M, Huang W 2016 Sci. Rep. 6 24995Google Scholar
[37] Smith N J, Doran N J 1996 Opt. Lett. 21 570Google Scholar
[38] Tang D Y, Zhao L M, Wu X, Zhang H 2009 Phys. Rev. A 80 023806Google Scholar
-
-
[1] Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar
[3] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar
[4] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar
Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar
[5] Chang G, Wei Z 2020 iScience 23 101101Google Scholar
[6] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar
Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar
[7] Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar
[8] Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O, Steinberg H 2018 Phys. Rev. Lett. 121 133902Google Scholar
[9] Wei Z W, Liu M, Ming S X, Cui H, Luo A P, Xu W C, Luo Z C 2020 Opt. Lett. 45 531Google Scholar
[10] Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar
[11] Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar
[12] Liu J, Li X, Zhang S, Liu L, Yan D, Wang C 2021 Opt. Express 29 30494Google Scholar
[13] Lauterio-Cruz J P, Hernandez-Garcia J C, Pottiez O, Estudillo-Ayala J M, Kuzin E A, Rojas-Laguna R, Santiago-Hernandez H, Jauregui-Vazquez D 2016 Opt. Express 24 13778Google Scholar
[14] Özgören K, Öktem B, Yilmaz S, Ilday F Ö, Eken K 2011 Opt. Express 19 17647Google Scholar
[15] Keren S, Brand E, Levi Y, Levit B, Horowitz M 2002 Opt. Lett. 27 125Google Scholar
[16] Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar
[17] Jeong Y, Vazquez Zuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar
[18] 陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002Google Scholar
Chen J W, Zhao L M 2017 Laser Optoelectron. Prog. 54 110002Google Scholar
[19] 窦志远, 张斌, 刘帅林, 侯静 2020 物理学报 69 164202Google Scholar
Dou Z Y, Zhang B, Liu S L, Hou J 2020 Acta Phys. Sin. 69 164202Google Scholar
[20] Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar
[21] Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y, Zhao W 2009 Opt. Express 17 8506Google Scholar
[22] Sobon G, Krzempek K, Kaczmarek P, Abramski K M, Nikodem M 2011 Opt. Commun. 284 4203Google Scholar
[23] Wang Y, Mao D, Gan X, Han L, Ma C, Xi T, Zhang Y, Shang W, Hua S, Zhao J 2015 Opt. Express 23 205Google Scholar
[24] Wu X, Tang D Y, Luan X N, Zhang Q 2011 Opt. Commun. 284 3615Google Scholar
[25] Huang Y Q, Hu Z A, Cui H, Luo Z C, Luo A P, Xu W C 2016 Opt. Lett. 41 4056Google Scholar
[26] Cheng Z, Li H, Wang P 2015 Opt. Express 23 5972Google Scholar
[27] Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2018 Laser Phys. Lett. 15 055101Google Scholar
[28] Liu M, Luo A P, Xu W C, Luo Z C 2016 Opt. Lett. 41 3912Google Scholar
[29] Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2017 Chin. Opt. Lett. 15 080605Google Scholar
[30] Wang Z, Wang X, Song Y, Liu J, Zhang H 2020 Phys. Rev. A 101 013825Google Scholar
[31] Zaviyalov A, Grelu P, Lederer F 2012 Opt. Lett. 37 175Google Scholar
[32] Lecaplain C, Grelu P 2014 Phys. Rev. A 90 013805Google Scholar
[33] Wang Z, Ma C, Song Y, Liu J, Zhu H, Duan Y, Zhang H 2020 Opt. Express 28 39463Google Scholar
[34] Solli D R, Herink G, Jalali B, Ropers C 2012 Nat. Photonics 6 463Google Scholar
[35] Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755Google Scholar
[36] Gao L, Zhu T, Wabnitz S, Liu M, Huang W 2016 Sci. Rep. 6 24995Google Scholar
[37] Smith N J, Doran N J 1996 Opt. Lett. 21 570Google Scholar
[38] Tang D Y, Zhao L M, Wu X, Zhang H 2009 Phys. Rev. A 80 023806Google Scholar
计量
- 文章访问数: 6557
- PDF下载量: 222
- 被引次数: 0