搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孤子和类噪声脉冲共存的锁模光纤激光器

杨亚涛 邹媛 曾琼 宋宇锋 王可 王振洪

引用本文:
Citation:

多孤子和类噪声脉冲共存的锁模光纤激光器

杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪

Mode-locked fiber laser with coexistence of m ultiple solitons and noise-like pulses

Yang Ya-Tao, Zou Yuan, Zeng Qiong, Song Yu-Feng, Wang Ke, Wang Zhen-Hong
PDF
HTML
导出引用
  • 研究了非线性放大环形镜锁模掺铒光纤激光器中多孤子和类噪声脉冲同时产生的演化特性. 当激光器运行在类噪声脉冲状态时, 单个孤子簇里包含着多个不同间距的脉冲, 同时相邻脉冲之间的脉冲间距均保持在数百皮秒的范围内, 说明多孤子脉冲之间存在较弱的相互作用力. 并且, 单个孤子簇中的总脉冲数随着抽运功率的增大而增加. 在最大的抽运功率时,单个孤子簇包络内部有8个脉冲. 此外, 利用时间拉伸色散傅里叶变换技术研究了这种类噪声多孤子脉冲的实时动力学演化特性, 研究表明类噪声脉冲状态下的多孤子脉冲中每个脉冲实际上都是由随机强度的噪声混沌波组成的. 这些研究结果将有助于深入理解类噪声脉冲的物理机制, 也将为探索其他复杂孤子动力学过程奠定基础.
    Dissipative solitons (DSs) usually play an important role in understanding the intricate phenomena in various nonlinear systems. As a special regime in the dissipative system, noise-like pulses (NLPs) can have typical characteristics of ultra-broad and smooth spectrum, high pulse energy and low temporal coherence, making them a good candidate for many applications, including supercontinuum generation, industrial micromachining and optical metrology. In this paper, a noteworthy observation concerning the dynamics on coexistence of the multiple solitons and NLPs operation in a net-normal-dispersion passively mode-locked fiber laser based on nonlinear amplifying loop mirror (NALM) is reported. In the experiment, the stable DSs can be easily obtained at a proper pump power. When appropriately increasing the pump power and changing the polarization state, the DS operation can change to the NLP regime. When the fiber laser operates in an NLP state, the single soliton bunch contains multiple pulses with different temporal spacings. And the temporal interval between the adjacent pulses is in a range of several hundred picoseconds, which decreases from left to right with time changing, indicating that there are long-distance interactions among these multiple pulses and they gradually become stronger and stronger. Besides, the pulse number of single soliton bunches on the NLP operation increases almost linearly with pump power increasing. At a maximum pump power, there are eight pulses inside the single soliton bunch. With the increase of pump power, the average output power and pulse energy of these multiple solitons in the NLP state increase. The maximum average output power and pulse energy are 12.3 mW and 1.65 nJ, respectively. In addition, the real-time dynamic evolution of these multiple solitons in the NLP state is investigated by using the time-stretch dispersive Fourier-transform method. The results show that all the pulses in NLP regime actually consist of chaotic noise waves with stochastic intensities. We believe that this paper will be of significance in studying ultrafast fiber lasers and nonlinear optics. Moreover, we hope that these findings will be helpful in understanding the physical mechanism of NLPs and paving the way for exploring other complex soliton dynamics.
      通信作者: 王振洪, tjwzh843@163.com
    • 基金项目: 国家自然科学基金(批准号: 62005178)、深圳市基础研究面上项目(批准号: JCYJ20190808143611709)和深圳市基础研究计划项目(批准号: JCYJ20200109105216803).
      Corresponding author: Wang Zhen-Hong, tjwzh843@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62005178), Fundamental Research Program of Shenzhen (Grant No. JCYJ20190808143611709) and Fundamental Research Project of Shenzhen (Grant No. JCYJ20200109105216803).
    [1]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar

    [4]

    马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar

    Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar

    [5]

    Chang G, Wei Z 2020 iScience 23 101101Google Scholar

    [6]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [7]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [8]

    Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O, Steinberg H 2018 Phys. Rev. Lett. 121 133902Google Scholar

    [9]

    Wei Z W, Liu M, Ming S X, Cui H, Luo A P, Xu W C, Luo Z C 2020 Opt. Lett. 45 531Google Scholar

    [10]

    Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar

    [11]

    Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar

    [12]

    Liu J, Li X, Zhang S, Liu L, Yan D, Wang C 2021 Opt. Express 29 30494Google Scholar

    [13]

    Lauterio-Cruz J P, Hernandez-Garcia J C, Pottiez O, Estudillo-Ayala J M, Kuzin E A, Rojas-Laguna R, Santiago-Hernandez H, Jauregui-Vazquez D 2016 Opt. Express 24 13778Google Scholar

    [14]

    Özgören K, Öktem B, Yilmaz S, Ilday F Ö, Eken K 2011 Opt. Express 19 17647Google Scholar

    [15]

    Keren S, Brand E, Levi Y, Levit B, Horowitz M 2002 Opt. Lett. 27 125Google Scholar

    [16]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [17]

    Jeong Y, Vazquez Zuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar

    [18]

    陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002Google Scholar

    Chen J W, Zhao L M 2017 Laser Optoelectron. Prog. 54 110002Google Scholar

    [19]

    窦志远, 张斌, 刘帅林, 侯静 2020 物理学报 69 164202Google Scholar

    Dou Z Y, Zhang B, Liu S L, Hou J 2020 Acta Phys. Sin. 69 164202Google Scholar

    [20]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar

    [21]

    Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y, Zhao W 2009 Opt. Express 17 8506Google Scholar

    [22]

    Sobon G, Krzempek K, Kaczmarek P, Abramski K M, Nikodem M 2011 Opt. Commun. 284 4203Google Scholar

    [23]

    Wang Y, Mao D, Gan X, Han L, Ma C, Xi T, Zhang Y, Shang W, Hua S, Zhao J 2015 Opt. Express 23 205Google Scholar

    [24]

    Wu X, Tang D Y, Luan X N, Zhang Q 2011 Opt. Commun. 284 3615Google Scholar

    [25]

    Huang Y Q, Hu Z A, Cui H, Luo Z C, Luo A P, Xu W C 2016 Opt. Lett. 41 4056Google Scholar

    [26]

    Cheng Z, Li H, Wang P 2015 Opt. Express 23 5972Google Scholar

    [27]

    Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2018 Laser Phys. Lett. 15 055101Google Scholar

    [28]

    Liu M, Luo A P, Xu W C, Luo Z C 2016 Opt. Lett. 41 3912Google Scholar

    [29]

    Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2017 Chin. Opt. Lett. 15 080605Google Scholar

    [30]

    Wang Z, Wang X, Song Y, Liu J, Zhang H 2020 Phys. Rev. A 101 013825Google Scholar

    [31]

    Zaviyalov A, Grelu P, Lederer F 2012 Opt. Lett. 37 175Google Scholar

    [32]

    Lecaplain C, Grelu P 2014 Phys. Rev. A 90 013805Google Scholar

    [33]

    Wang Z, Ma C, Song Y, Liu J, Zhu H, Duan Y, Zhang H 2020 Opt. Express 28 39463Google Scholar

    [34]

    Solli D R, Herink G, Jalali B, Ropers C 2012 Nat. Photonics 6 463Google Scholar

    [35]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755Google Scholar

    [36]

    Gao L, Zhu T, Wabnitz S, Liu M, Huang W 2016 Sci. Rep. 6 24995Google Scholar

    [37]

    Smith N J, Doran N J 1996 Opt. Lett. 21 570Google Scholar

    [38]

    Tang D Y, Zhao L M, Wu X, Zhang H 2009 Phys. Rev. A 80 023806Google Scholar

  • 图 1  光纤激光器实验装置图

    Fig. 1.  Experimental setup of the fiber laser.

    图 2  耗散孤子的输出特性 (a)光谱; (b)脉冲序列; (c)射频谱; (d)映射光谱

    Fig. 2.  Output characteristics of dissipative solitons: (a) Optical spectrum; (b) pulse trains; (c) radio-frequency spectrum; (d) shot-to-shot spectra.

    图 3  (a)光谱; (b)脉冲序列; (c)射频谱; (d)自相关; (e)基于高速示波器记录的脉冲序列; (f)图(e)中红色虚线框的细节

    Fig. 3.  (a) Optical spectrum; (b) pulse trains; (c) radio-frequency spectrum; (d) autocorrelation curve; (e) temporal trains based on high-speed oscilloscope; (f) close-ups of red dotted section in (e).

    图 4  (a)抽运功率为300 mW的三维时序; (b)抽运功率为500 mW的三维时序; (c)不同抽运功率时单个孤子簇中脉冲的数目

    Fig. 4.  (a) Three-dimensional pulse trains at pump power of 300 mW; (b) three-dimensional pulse trains at pump power of 500 mW; (c) total amount of single soliton bunch at different pump powers.

    图 5  (a)不同抽运功率的光谱演化过程; (b)输出功率随抽运功率的变化

    Fig. 5.  (a) Optical spectra and (b) output power at different pump powers.

    图 6  共存脉冲的平均光谱 (a)和映射光谱(b)

    Fig. 6.  (a) Average spectrum and (b) shot-to-shot spectra at pump power of coexisting pulses.

    图 7  脉冲能量变化曲线(黑色曲线: 共存脉冲; 红色曲线: 耗散孤子)

    Fig. 7.  Energy evolution of consecutive roundtrips (black line: coexisting pulses; red line: dissipative solitons).

  • [1]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar

    [4]

    马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar

    Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar

    [5]

    Chang G, Wei Z 2020 iScience 23 101101Google Scholar

    [6]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [7]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [8]

    Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O, Steinberg H 2018 Phys. Rev. Lett. 121 133902Google Scholar

    [9]

    Wei Z W, Liu M, Ming S X, Cui H, Luo A P, Xu W C, Luo Z C 2020 Opt. Lett. 45 531Google Scholar

    [10]

    Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar

    [11]

    Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar

    [12]

    Liu J, Li X, Zhang S, Liu L, Yan D, Wang C 2021 Opt. Express 29 30494Google Scholar

    [13]

    Lauterio-Cruz J P, Hernandez-Garcia J C, Pottiez O, Estudillo-Ayala J M, Kuzin E A, Rojas-Laguna R, Santiago-Hernandez H, Jauregui-Vazquez D 2016 Opt. Express 24 13778Google Scholar

    [14]

    Özgören K, Öktem B, Yilmaz S, Ilday F Ö, Eken K 2011 Opt. Express 19 17647Google Scholar

    [15]

    Keren S, Brand E, Levi Y, Levit B, Horowitz M 2002 Opt. Lett. 27 125Google Scholar

    [16]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [17]

    Jeong Y, Vazquez Zuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar

    [18]

    陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002Google Scholar

    Chen J W, Zhao L M 2017 Laser Optoelectron. Prog. 54 110002Google Scholar

    [19]

    窦志远, 张斌, 刘帅林, 侯静 2020 物理学报 69 164202Google Scholar

    Dou Z Y, Zhang B, Liu S L, Hou J 2020 Acta Phys. Sin. 69 164202Google Scholar

    [20]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar

    [21]

    Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y, Zhao W 2009 Opt. Express 17 8506Google Scholar

    [22]

    Sobon G, Krzempek K, Kaczmarek P, Abramski K M, Nikodem M 2011 Opt. Commun. 284 4203Google Scholar

    [23]

    Wang Y, Mao D, Gan X, Han L, Ma C, Xi T, Zhang Y, Shang W, Hua S, Zhao J 2015 Opt. Express 23 205Google Scholar

    [24]

    Wu X, Tang D Y, Luan X N, Zhang Q 2011 Opt. Commun. 284 3615Google Scholar

    [25]

    Huang Y Q, Hu Z A, Cui H, Luo Z C, Luo A P, Xu W C 2016 Opt. Lett. 41 4056Google Scholar

    [26]

    Cheng Z, Li H, Wang P 2015 Opt. Express 23 5972Google Scholar

    [27]

    Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2018 Laser Phys. Lett. 15 055101Google Scholar

    [28]

    Liu M, Luo A P, Xu W C, Luo Z C 2016 Opt. Lett. 41 3912Google Scholar

    [29]

    Wang Z, Wang Z, Liu Y G, He R, Wang G, Yang G, Han S 2017 Chin. Opt. Lett. 15 080605Google Scholar

    [30]

    Wang Z, Wang X, Song Y, Liu J, Zhang H 2020 Phys. Rev. A 101 013825Google Scholar

    [31]

    Zaviyalov A, Grelu P, Lederer F 2012 Opt. Lett. 37 175Google Scholar

    [32]

    Lecaplain C, Grelu P 2014 Phys. Rev. A 90 013805Google Scholar

    [33]

    Wang Z, Ma C, Song Y, Liu J, Zhu H, Duan Y, Zhang H 2020 Opt. Express 28 39463Google Scholar

    [34]

    Solli D R, Herink G, Jalali B, Ropers C 2012 Nat. Photonics 6 463Google Scholar

    [35]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photonics 8 755Google Scholar

    [36]

    Gao L, Zhu T, Wabnitz S, Liu M, Huang W 2016 Sci. Rep. 6 24995Google Scholar

    [37]

    Smith N J, Doran N J 1996 Opt. Lett. 21 570Google Scholar

    [38]

    Tang D Y, Zhao L M, Wu X, Zhang H 2009 Phys. Rev. A 80 023806Google Scholar

  • [1] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [2] 罗民, 张泽贤, 陈乃妙, 刘萌, 罗爱平, 徐文成, 罗智超. 纯四次孤子光纤激光器研究进展. 物理学报, 2023, 72(20): 204203. doi: 10.7498/aps.72.20230868
    [3] 赵畅, 黄千千, 黄梓楠, 戴礼龙, SergeyevSergey, RozhinAleksey, 牟成博. 偏振动态可调耗散孤子光纤激光器实验研究. 物理学报, 2020, 69(18): 184218. doi: 10.7498/aps.69.20201305
    [4] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [5] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器. 物理学报, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [6] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [7] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [9] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [10] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [11] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [12] 周振春, 马松华, 方建平, 任清褒. (2+1)维孤子系统的多孤子解和分形结构. 物理学报, 2010, 59(11): 7540-7545. doi: 10.7498/aps.59.7540
    [13] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究. 物理学报, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [14] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [15] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [16] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [19] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [20] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
计量
  • 文章访问数:  4829
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-03-10
  • 上网日期:  2022-06-26
  • 刊出日期:  2022-07-05

/

返回文章
返回