搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用

周寅利 贾雨棽 张星 张建伟 刘占超 宁永强 王立军

引用本文:
Citation:

795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用

周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军

795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope

Zhou Yin-Li, Jia Yu-Chen, Zhang Xing, Zhang Jian-Wei, Liu Zhan-Chao, Ning Yong-Qiang, Wang Li-Jun
PDF
HTML
导出引用
  • 在传统的氧化物约束型的垂直腔面发射半导体激光器中, 横向光限制主要取决于氧化层的厚度及其相对于腔内光驻波分布的位置. 通过减少外延结构中氧化层与光场驻波分布之间的重叠, 可以降低芯层与包层之间的有效折射率差, 从而减少腔内可存在的横向模的数量, 并增加横模向氧化物孔径之外的扩展. 本文利用这一原理设计并制作了一个795 nm的大氧化孔径的垂直腔面发射激光器. 器件在80 ℃下可实现4.1 mW的高功率单基模工作, 最高边模抑制比为41.68 dB, 最高正交偏振抑制比为27.46 dB. 将VCSEL作为抽运源应用于核磁共振陀螺仪系统样机中, 实验结果表面新设计的VCSEL可以满足陀螺系统的初步应用需求.
    Single-transverse mode vertical-cavity surface-emitting lasers (VCSELs) are preferable optical sources for small low-power atomic sensors, including chip-scale atomic clocks, magnetometers, and gyroscopes.When VCSEL is used as the pump source of nuclear magnetic resonance gyroscope, it is required to have high single-mode output power. Oxide aperture diameter must be sufficiently small (< 4 µm) in a conventional oxide-confined VCSEL to support the fundamental mode alone. However, high series resistance (typically > 200 Ω for GaAs-based VCSEL) from the small aperture limits its output power and reliability due to excessive current-induced self-heating and high current density. It is a very attractive idea to achieve high power operation of an intrinsic single mode VCSEL based on a large oxide aperture by means of epitaxial structure design without introducing additional process steps. Transverse optical confinement in oxide-confined VCSELs crucially depends on the thickness of oxide layer and its position relative to standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as the difference in effective refractive index between core and cladding of the VCSEL, thereby reducing the number of transverse modes andincreasing the mode extension beyond oxide aperture. A 795-nm VCSEL is designed and fabricated based on this concept. A cavity structure of VCSEL with gain-cavity detuning of ~10.8 nm at room temperature is adopted in this paper. The effective refractive index and the standing wave distribution of the VCSEL are calculated, and the position of the oxide layer in the epitaxial structure of the VCSEL is optimized according to the standing wave distribution. Finally, the structure with low effective refractive index difference is obtained. The proposed device achieves high single-mode operation of 4.1 mW at 80 ℃, SMSR of 41.68 dB, and OPSR of 27.4 dB. The VCSEL is applied to a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance, and satisfactory test results are obtained. This paper presents a new method of designing single-mode high power VCSEL and its feasibility is also demonstrated through experimental results.
      通信作者: 张星, zhangx@ciomp.ac.cn ; 刘占超, liuzhanchao@hotmail.com
    • 基金项目: 国家重点研究发展计划(批准号: 2018YFB2002400)、国家自然科学基金(批准号: 61804151, 62090060, 61874117, 11774343, 61874119)和吉林省科技发展计划项目(批准号: 20200401006GX)资助的课题.
      Corresponding author: Zhang Xing, zhangx@ciomp.ac.cn ; Liu Zhan-Chao, liuzhanchao@hotmail.com
    • Funds: Project supported by National Key Research and Development Program (Grant No. 2018YFB2002400), the National Natural Science Foundation of China (Grant Nos. 61804151, 62090060, 61874117, 11774343, 61874119), and the Science and Technology Development Project of Jilin Province (Grant No. 20200401006GX).
    [1]

    Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar

    [2]

    Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar

    [3]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [4]

    Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar

    [5]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar

    [6]

    Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar

    [7]

    Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar

    [8]

    Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar

    [9]

    Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar

    [10]

    Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar

    [11]

    Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar

    [12]

    Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar

    [13]

    Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar

    [14]

    Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar

    [15]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar

    [16]

    Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar

    [17]

    Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)

    [18]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar

    [19]

    张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar

    Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar

    [21]

    Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16

    [22]

    Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573

    [23]

    赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar

    Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar

    [24]

    Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar

    [25]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [26]

    Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar

    [27]

    时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar

    Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar

    [28]

    Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124

    [29]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar

    [30]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781

    [31]

    Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar

  • 图 1  VCSEL结构图

    Fig. 1.  Schematic of VCSELs.

    图 2  (a) In0.125Al0.14Ga0.735As/Al0.3Ga0.7As量子阱在不同温度下的增益谱; (b)腔模位置增益和波长随温度变化

    Fig. 2.  (a) Gain spectra of In0.125Al0.14Ga0.735As/Al0.3Ga0.7As quantum wells at different temperatures; (b) the wavelength and gain at cavity-mode at different temperature.

    图 3  在折射率差为(a) 0.01和(b) 0.002的两个VCSEL中径向3个模式LP01, LP11, 和LP21 的分布

    Fig. 3.  (a) Distribution of LP01, LP11, and LP21 modes along the radial direction of VCSELs with (a) Δneff = 0.01 and (b) Δneff = 0.002.

    图 4  VCSEL的功率特性的光谱特性测试系统原理图

    Fig. 4.  Schematic diagram of the power and spectrum characteristic test system of VCSEL.

    图 5  器件在不同电流 (a)及不同温度(b)下的光谱特性

    Fig. 5.  Spectral characteristics of VCSELs with different injection current (a) and different temperature (b).

    图 6  VCSEL在80 ℃下不同电流下的近场光斑

    Fig. 6.  Near field patterns of VCSEL under different current at 80 ℃.

    图 7  (a) VCSEL的功率电流曲线; (b)阈值电流随温度变化

    Fig. 7.  (a) Power-current characteristics of the device; (b) threshold current varying with temperature.

    图 8  (a) VCSEL的偏振功率曲线; (b) 80 ℃, 5 mA时的偏振光谱

    Fig. 8.  (a)Optical power of VCSEL in different polarization angles at 80 ℃; (b) polarization-resolved spectrum of VCSEL at 80 ℃ and 5 mA.

    图 9  NMRG系统原理图

    Fig. 9.  Diagram of the NMRG prototype.

    图 10  采用(a)商用DBR激光器和(b)新设计VCSEL激光器作为NMRG的抽运源测得的系统FID信号

    Fig. 10.  The FID signal of the NMRG system obtain by using (a) commercial DBR laser and (b) newly designed VCSEL laser as the pump source.

    图 11  采用(a)商用DBR激光器和(b)新设计VCSEL激光器作为NMRG的抽运源测得的系统信噪比

    Fig. 11.  The signal-to-noise ratio of the NMRG system obtain by using (a) commercial DBR laser and (b) newly designed VCSEL laser as the pump source.

  • [1]

    Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar

    [2]

    Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar

    [3]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [4]

    Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar

    [5]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar

    [6]

    Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar

    [7]

    Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar

    [8]

    Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar

    [9]

    Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar

    [10]

    Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar

    [11]

    Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar

    [12]

    Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar

    [13]

    Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar

    [14]

    Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar

    [15]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar

    [16]

    Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar

    [17]

    Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)

    [18]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar

    [19]

    张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar

    Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar

    [21]

    Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16

    [22]

    Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573

    [23]

    赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar

    Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar

    [24]

    Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar

    [25]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [26]

    Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar

    [27]

    时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar

    Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar

    [28]

    Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124

    [29]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar

    [30]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781

    [31]

    Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar

  • [1] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [2] 张建伟, 张星, 周寅利, 李惠, 王岩冰, 陈志明, 徐嘉琪, 宁永强, 王立军. 1550 nm毫瓦级单横模垂直腔面发射半导体激光器. 物理学报, 2022, 71(6): 064204. doi: 10.7498/aps.71.20212132
    [3] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] 邱橙, 陈泳屹, 高峰, 秦莉, 王立军. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制. 物理学报, 2019, 68(16): 164204. doi: 10.7498/aps.68.20190744
    [5] 刘储, 关宝璐, 米国鑫, 廖翌如, 刘振扬, 李建军, 徐晨. 低阈值单横模852 nm半导体激光器. 物理学报, 2017, 66(8): 084205. doi: 10.7498/aps.66.084205
    [6] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [7] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [8] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [9] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [10] 刘 崇, 葛剑虹, 项 震, 陈 军. 热透镜的球差效应对大基模体积激光谐振腔模式的影响. 物理学报, 2008, 57(3): 1704-1708. doi: 10.7498/aps.57.1704
    [11] 张玉驰, 王晓勇, 李 刚, 王军民, 张天才. 自由运转半导体激光器边模间的强度关联. 物理学报, 2007, 56(4): 2202-2206. doi: 10.7498/aps.56.2202
    [12] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [13] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [14] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [15] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [16] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [17] 崔碧峰, 李建军, 邹德恕, 廉 鹏, 韩金茹, 王东凤, 杜金玉, 刘 莹, 赵慧敏, 沈光地. 大光腔小垂直发散角InGaAs/GaAs/AlGaAs半导体激光器. 物理学报, 2004, 53(7): 2150-2153. doi: 10.7498/aps.53.2150
    [18] 王晓辉, 陈徐宗, 侯继东, 杨东海, 王义遒. 用于激光冷却的半导体激光器大频差边模注入锁定的理论及实验研究. 物理学报, 2000, 49(1): 85-93. doi: 10.7498/aps.49.85
    [19] 郭长志, 陈水莲. 分布反射面发射垂直微腔半导体激光器的微腔效应. 物理学报, 1997, 46(9): 1731-1743. doi: 10.7498/aps.46.1731
    [20] 郭长志, 黄永箴. 色散关系和纵向耦合腔(C3)对半导体激光器的模谱行为的影响. 物理学报, 1990, 39(11): 1739-1744. doi: 10.7498/aps.39.1739
计量
  • 文章访问数:  5668
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-18
  • 上网日期:  2022-06-29
  • 刊出日期:  2022-07-05

/

返回文章
返回