搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完备Buck-Sukumar模型的光子阻塞效应

刘雪莹 成书杰 高先龙

引用本文:
Citation:

完备Buck-Sukumar模型的光子阻塞效应

刘雪莹, 成书杰, 高先龙

The photon blockade effect of a complete Buck-Sukumar model

Liu Xue-Ying, Cheng Shu-Jie, Gao Xian-Long
PDF
HTML
导出引用
  • Buck-Sukumar (BS) 模型在一定的耦合强度处会出现能级塌缩现象. 通过引入一个非线性光子项, 定义了一个完备的 BS 模型, 消除了能级塌缩. 进一步通过计算二阶关联函数等物理量理解了非线性光子项与失谐量对该模型的影响. 结果表明, 在共振情况下, 非线性光子项破坏了BS模型的能谱简谐性, 可以在更大的耦合强度范围内产生单光子投影态, 形成光子阻塞; 而在非共振情况下, 非线性光子项使非简谐的能谱在整个耦合区间都有定义, 且正失谐促进光子阻塞, 负失谐抑制光子阻塞.
    The Buck-Sukumar (BS) model, with a nonlinear coupling between the atom and the light field, is well defined only when its coupling strength is lower than a critical coupling. Its energy collapses at a critical coupling and is unbounded beyond that value. In other words, the BS model is incomplete. We introduce a simple and complete BS model by adding a nonlinear photon term into the initial BS model. Considering the rotating wave approximation, this complete BS model conserves the excited number and the parity. By expanding it in the subspace of the product state between the atom and the field, we solve the time-independent Schrödinger equation to obtain the eigenenergy and eigenstate. Furthermore, we explore the influence of the nonlinear photon term on the energy spectrum and the photon blockade effect for the complete BS model by calculating the excited number and second-order correlation function.Our study shows that, the nonlinear photon term not only eliminates the energy spectral collapse but also makes it well-defined and complete in all the coupling regime. When at the resonance between the atomic and the field frequency, the nonlinear photon term breaks the harmonicity of the energy spectrum and produces a ladder of the excited number in the ground state. Because the larger nonlinear photon term inhibits the photon transition from an energy level to the higher one, it produces the single-photon projection state in the larger coupling region. Accordingly, we find that the nonlinear photon term promotes photon blockade by calculating the second-order correlation function. When at the non-resonant region, the nonlinear photon term enlarges the originally anharmonic energy ladder. For a complete BS model with the fixed nonlinear photon coupling strength and the fixed detuning, the energy level for the positive detuning is lower than that with the negative detuning, and more energy is required to overcome the absorption of a photon. Therefore, the positive detuning promotes the photon blockade. For the negative detuning, the system is more likely to absorb a photon and jump to a higher energy level, and therefore, suppresses the photon blockade.
      通信作者: 高先龙, gaoxl@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174346, 11835011)资助的课题.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174346, 11835011).
    [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [2]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132Google Scholar

    [3]

    Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M, Haroche S 1996 Phys. Rev. Lett. 76 1800Google Scholar

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [5]

    Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J 2007 Nat. Lett. 450 857Google Scholar

    [6]

    Frisk-Kokum A, Miranowicz A, De Liberato S, Savasta S, Nori F 2019 Nat. Rev. Phys. 1 19Google Scholar

    [7]

    Rossatto D Z, Villas-Bǒas C J, Sanz M, Solano E 2017 Phys. Rev. A 96 013849Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Chen Q, Wang C, He S, Wang K 2012 Phys. Rev. A 86 023822Google Scholar

    [10]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [11]

    Ng K M, Lo C F, Liu K L 2000 Phys. A: Stat. Mech. Appl. 275 463Google Scholar

    [12]

    Rodríguez-Lara B M, Soto-Eguibar F, Cárdenas A Z, Moya-Cessa H M 2013 Opt. Express 21 12888Google Scholar

    [13]

    Rodríguez-Lara B M 2014 J. Opt. Soc. Am. B 31 1719Google Scholar

    [14]

    Penna V, Raffa F A 2014 Int. J. Quantum Inf. 12 1560010Google Scholar

    [15]

    Cordeiro F, Providência C, da Providência J, Nishiyama S 2007 J. Phys. A: Math. Theor. 40 12153Google Scholar

    [16]

    Liu X Y, Ren X Z, Wang C, Gao X L, Wang K L 2020 Commun. Theor. Phys. 72 065502Google Scholar

    [17]

    Felicetti S, Rossatto D Z, Rico E, Solano E, Forn-Díaz P 2018 Phys. Rev. A. 97 013851Google Scholar

    [18]

    Duan L, Xie Y F, Braak D, Chen Q H 2016 J. Phys. A: Math. Theor. 49 464002Google Scholar

    [19]

    Lo C F 2020 Sci. Rep. 10 18761Google Scholar

    [20]

    Cui S, Grémaud B, Guo W, Batrouni G G 2020 Phys. Rev. A 102 033334Google Scholar

    [21]

    Moya-Cessa H, Soto-Eguibar F, Vargas-Martínez J M, Juárez- Amaro R, Zúñiga-Segundo A 2012 Phys. Rep. 513 229Google Scholar

    [22]

    Valverde C, Gonçalves V G, Baseia B 2016 Phys. A: Stat. Mech. Appl. 446 171Google Scholar

    [23]

    Pritchard J D 2012 Ph. D. Dissertation (Durham: Durham University)

    [24]

    Grünwald P 2019 New J. Phys. 21 093003Google Scholar

    [25]

    Li M C, Chen A X 2019 Atom. Appl. Sci. 9 980Google Scholar

    [26]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [27]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoǧlu A 2005 Science 290 2282Google Scholar

    [28]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [29]

    Koch J, Hur K L 2009 Phys. Rev. A. 80 023811Google Scholar

  • 图 1  共振时 $\varDelta=0$, 非线性光子耦合项对旋波近似下的 BS 模型能谱的影响, 其中 (a) $ U=0 $, (b) $ U=0.1 $, 红色代表偶宇称态, 蓝色代表奇宇称态, 实线代表$ E_{n}^{\left(+\right)} $支, 虚线代表$ E_{n}^{\left(-\right)} $

    Fig. 1.  Influence of the nonlinear photon term on the BS model with the rotating wave approximation at resonance $\varDelta=0$, where (a) $ U=0 $, (b) $ U=0.1 $, the red (blue) line represents the energy level with even (odd) parity while the solid (dashed) line represents the energy level of $ E_{n}^{\left(+\right)} $ ($ E_{n}^{\left(-\right)} $).

    图 2  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下BS模型激发数$ \langle\hat{N}_{{\rm{e}}}\rangle $的影响

    Fig. 2.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the excited number $ \langle\hat{N}_{{\rm{e}}}\rangle $

    图 3  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下的BS模型能级差$ \text{δ} E_{m}, \; m=d, \; 0, \; 1, \; \cdots $的影响 (a) $ U=0 $; (b) $ U \ne 0 $, 图中红色线表示 $ U=1 $, 黑色线表示$ U=0.5 $

    Fig. 3.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the nearest neighbor energy level difference $\text{δ} E_{m}, \; m=d, \; 0,\; 1, \; \cdots $, where (a) $ U=0 $, (b)$ U \ne 0 $ and the red (black) line represents $ U=1(0.5) $ in panel (b)

    图 4  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下 BS 模型的基态二阶关联函数$ G_{2}\left(0\right) $的影响 (a) $ G_{2}\left(0\right) $随非线性光子 U和耦合强度$ g_{{\rm{r}}} $的变化, 颜色代表对$ G_{2}\left(0\right) $取对数后$ \log\left(G_{2}\left(0\right)\right) $的值; (b) 不同非线性光子耦合强度U$ G_{2}\left(0\right) $随耦合强度$ g_{{\rm{r}}} $的变化

    Fig. 4.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the second-order correlation function $ G_{2}\left(0\right) $: (a) Variation of $ G_{2}\left(0\right) $ as a function of the nonlinear photon term U and the coupling strength $ g_{{\rm{r}}} $, where the color represents the value of $ \log\left(G_{2}\left(0\right)\right) $; (b) variation of $ G_{2}\left(0\right) $ as a function of the coupling strength $ g_{{\rm{r}}} $ for different nonlinear photon terms U

    图 5  非线性光子项为$ U=0.1 $ 时, 失谐量$ \varDelta \ne 0 $对旋波近似下BS模型的(a) 基态激发数 $ \hat{N}_{{\rm{e}}} $, (b) 能级差$\text{δ} E_{m}, $$ \; m=d, \;0,\; 1$, (c) 基态二阶关联函数$ G_{2}\left(0\right) $的影响. 图(b)中红色线代表$ \varDelta=-2 $, 黑色线代表$ \varDelta=0 $, 蓝色线代表$ \varDelta=2 $

    Fig. 5.  For the BS model with the rotating wave approximation with the nonlinear photon term $ U=0.1 $, influence of the detuning $ \varDelta\ne0 $ on the (a) excited number $ \hat{N}_{{\rm{e}}} $ in the ground state, (b) nearest neighbor energy level difference$ \text{δ} E_{m},\; m=d, \;0, \;1 $, and (c) second-order correlation function $ G_{2}\left(0\right) $ in the ground state. The red, black and blue line represent $ \varDelta=-2 $, $ \varDelta=0 $ and $ \varDelta=2 $ respectively in panel (b)

  • [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [2]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132Google Scholar

    [3]

    Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M, Haroche S 1996 Phys. Rev. Lett. 76 1800Google Scholar

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [5]

    Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J 2007 Nat. Lett. 450 857Google Scholar

    [6]

    Frisk-Kokum A, Miranowicz A, De Liberato S, Savasta S, Nori F 2019 Nat. Rev. Phys. 1 19Google Scholar

    [7]

    Rossatto D Z, Villas-Bǒas C J, Sanz M, Solano E 2017 Phys. Rev. A 96 013849Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Chen Q, Wang C, He S, Wang K 2012 Phys. Rev. A 86 023822Google Scholar

    [10]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [11]

    Ng K M, Lo C F, Liu K L 2000 Phys. A: Stat. Mech. Appl. 275 463Google Scholar

    [12]

    Rodríguez-Lara B M, Soto-Eguibar F, Cárdenas A Z, Moya-Cessa H M 2013 Opt. Express 21 12888Google Scholar

    [13]

    Rodríguez-Lara B M 2014 J. Opt. Soc. Am. B 31 1719Google Scholar

    [14]

    Penna V, Raffa F A 2014 Int. J. Quantum Inf. 12 1560010Google Scholar

    [15]

    Cordeiro F, Providência C, da Providência J, Nishiyama S 2007 J. Phys. A: Math. Theor. 40 12153Google Scholar

    [16]

    Liu X Y, Ren X Z, Wang C, Gao X L, Wang K L 2020 Commun. Theor. Phys. 72 065502Google Scholar

    [17]

    Felicetti S, Rossatto D Z, Rico E, Solano E, Forn-Díaz P 2018 Phys. Rev. A. 97 013851Google Scholar

    [18]

    Duan L, Xie Y F, Braak D, Chen Q H 2016 J. Phys. A: Math. Theor. 49 464002Google Scholar

    [19]

    Lo C F 2020 Sci. Rep. 10 18761Google Scholar

    [20]

    Cui S, Grémaud B, Guo W, Batrouni G G 2020 Phys. Rev. A 102 033334Google Scholar

    [21]

    Moya-Cessa H, Soto-Eguibar F, Vargas-Martínez J M, Juárez- Amaro R, Zúñiga-Segundo A 2012 Phys. Rep. 513 229Google Scholar

    [22]

    Valverde C, Gonçalves V G, Baseia B 2016 Phys. A: Stat. Mech. Appl. 446 171Google Scholar

    [23]

    Pritchard J D 2012 Ph. D. Dissertation (Durham: Durham University)

    [24]

    Grünwald P 2019 New J. Phys. 21 093003Google Scholar

    [25]

    Li M C, Chen A X 2019 Atom. Appl. Sci. 9 980Google Scholar

    [26]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [27]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoǧlu A 2005 Science 290 2282Google Scholar

    [28]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [29]

    Koch J, Hur K L 2009 Phys. Rev. A. 80 023811Google Scholar

  • [1] 钟振, 文麒麟, 梁金福. 应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成. 物理学报, 2023, 72(2): 029601. doi: 10.7498/aps.72.20221170
    [2] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞. 物理学报, 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [3] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [4] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [5] 肖利, 雷天宇, 梁禺, 赵敏, 刘慧, 张斯淇, 李宏, 马季, 吴向尧. 二维函数光子晶体. 物理学报, 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [6] 韩笑纯, 黄靖正, 方晨, 曾贵华. 群速度色散对于纠缠光场二阶关联函数影响的研究. 物理学报, 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [7] 杨晨光, 阚瑞峰, 许振宇, 张光乐, 刘建国. Voigt线形函数二阶导数研究. 物理学报, 2014, 63(22): 223301. doi: 10.7498/aps.63.223301
    [8] 王锐, 王玉山. Delta-P1近似漫反射光学模型的二阶参量灵敏度. 物理学报, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [9] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [10] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [11] 程桂平, 柯莎莎, 张立辉, 李高翔. 光腔中两原子共振荧光的相干性质. 物理学报, 2007, 56(2): 830-836. doi: 10.7498/aps.56.830
    [12] 任国斌, 王 智, 娄淑琴, 简水生. 椭圆孔光子晶体光纤的本地正交函数模型. 物理学报, 2004, 53(2): 484-489. doi: 10.7498/aps.53.484
    [13] 葛伟宽, 张 毅. 二阶可降阶微分约束系统的形式不变性. 物理学报, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105
    [14] 王延申. 开边界六顶角模型的边界关联函数. 物理学报, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [15] 董 晖, 吴重庆, 付松年. 旋转光纤对二阶偏振模色散的影响. 物理学报, 2003, 52(8): 1934-1937. doi: 10.7498/aps.52.1934
    [16] 朱善华, 崔维娜, 黄国翔. 具有二阶和三阶非线性一维光子晶体中的耦合模孤子. 物理学报, 2002, 51(4): 789-795. doi: 10.7498/aps.51.789
    [17] 苏景辉, 赵言诚. 动力系Josephson结的距离函数的二阶近似. 物理学报, 1995, 44(7): 1023-1028. doi: 10.7498/aps.44.1023
    [18] 屈卫星, 徐至展, 张文琦. 二阶离化过程对双光子自电离光电子能谱的影响. 物理学报, 1991, 40(5): 686-692. doi: 10.7498/aps.40.686
    [19] 熊小明. 二维电子气的关联函数. 物理学报, 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [20] 詹达三. 完全相干场的二阶关联函数的分解性质. 物理学报, 1979, 28(1): 117-120. doi: 10.7498/aps.28.117
计量
  • 文章访问数:  3747
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 修回日期:  2022-03-18
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回