搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

克尔介质单模腔中光学参量放大与驱动力协同的光子阻塞效应

张志强

引用本文:
Citation:

克尔介质单模腔中光学参量放大与驱动力协同的光子阻塞效应

张志强

Photon Blockade in a Kerr Nonlinear Single-Mode Cavity with Optical Parametric Amplifier and Driving Field Synergy

Zhang Zhi-Qiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 通过解析求解与数值模拟相结合的方法,研究了由克尔介质单模腔与光学参量放大器组成的混合量子系统中光子阻塞效应的调控机制。建立了包含腔场衰减的有效哈密顿量主方程,采用Fock态基矢展开至双光子截断近似,解析求解稳态薛定谔方程获得了光子阻塞最佳条件。通过对比数值模拟结果与解析结果,解析结果与等时二阶关联函数的数值模拟高度一致,验证了理论的正确性。研究结果表明,在参数适当的条件下,系统中可以存在光子阻塞。系统处于共振时,平均光子数显著增加,这对实现高亮度的单光子源十分必要。进一步的驱动相位变化可导致最佳阻塞区域在驱动力强度与光学参量放大器非线性系数F-G参数二维平面发生位移甚至最佳光子阻塞区域形成的抛物线开口方向发生反转,数值结果和理论结果均证实了驱动力相位对光子阻塞效应的调控作用。值得一提的是,在克尔非线性强度在宽参数范围内,系统始终存在显著的光子阻塞效应,展现出典型的普适光子阻塞特征。物理机制分析表明,光子阻塞源于系统两条光子跃迁路径在特定参数下的量子干涉相消,有效抑制了双光子激发。克尔非线性虽调制系统能级但不影响量子干涉路径,使光子阻塞效应在宽参数范围内保持稳定。
    By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an Optical Parametric Amplifier (OPA).
    To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, accounting for single-mode cavity decay. To obtain analytical solutions for optimal photon blockade conditions, the quantum state of the system is expanded in the Fock state basis up to the two-photon level, and the steady-state probability amplitudes are derived by solving the Schrödinger equation. This yields analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system under appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.
    Numerical results demonstrate a significant enhancement in the average photon number under resonant conditions, providing theoretical support for optimizing singlephoton source brightness, which is essential for achieving high-brightness singlephoton sources.
    Furthermore, variations in the driving phase can induce displacement of the optimal photon blockade region in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.
    Additionally, the influence of Kerr nonlinearity is examined. Results show that photon blockade persists robustly across a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.
    Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the system's energy levels, it does not affect the quantum interference pathways, enabling the photon blockade effect to remain stable across a wide parameter range.
  • [1]

    Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279

    [2]

    Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602

    [3]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [4]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601

    [5]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602

    [6]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387

    [7]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713

    [8]

    Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108

    [9]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643

    [10]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802

    [11]

    Flayac H, Savona V 2017 Phys. Rev. A 96 053810

    [12]

    Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714

    [13]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715

    [14]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601

    [15]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [16]

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203]

    [17]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601

    [18]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819

    [20]

    Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030

    [21]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808

    [22]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838

    [23]

    Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089

    [24]

    Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879

    [25]

    Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187

    [26]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707

    [27]

    Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304

    [28]

    Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123

    [29]

    Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203

    [30]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601

    [31]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826

    [32]

    Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707

    [33]

    Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204

    [34]

    Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021

    [35]

    Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029

    [36]

    Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202

    [37]

    Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714

    [38]

    Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424

    [39]

    Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818

    [40]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043

    [41]

    Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512

    [42]

    Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707

    [43]

    Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065

    [44]

    Tan S M 1999 J. Opt. B 1 424

    [45]

    Tan S M 2012-12-21 Quantum Optics Toolbox for MATLAB

    [46]

    Zhang Z Q. 2025 Laser & Optoelectronics Progress, 62 0719001 (in Chinese) [张志强 2025 激光与光电子学进展 62 0719001]

    [47]

    Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723

    [48]

    Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402

    [49]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, doi: 10.7498/aps.71.20220691
    [2] 刘雪莹, 成书杰, 高先龙. 完备Buck-Sukumar模型的光子阻塞效应. 物理学报, doi: 10.7498/aps.70.20220238
    [3] 陈海霞, 林书玉. 非线性声场中的参量激发. 物理学报, doi: 10.7498/aps.70.20202093
    [4] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, doi: 10.7498/aps.69.20200890
    [5] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞. 物理学报, doi: 10.7498/aps.68.20190154
    [6] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, doi: 10.7498/aps.64.094203
    [7] 罗尧天, 唐昌建. 光子带隙谐振腔回旋管振荡器的自洽非线性理论. 物理学报, doi: 10.7498/aps.60.014104
    [8] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究. 物理学报, doi: 10.7498/aps.59.2525
    [9] 赖柏辉, 杜刚, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性产生四光子偏振态簇态. 物理学报, doi: 10.7498/aps.59.1017
    [10] 杨 健, 任 珉, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性效应实现纠缠转移. 物理学报, doi: 10.7498/aps.57.887
    [11] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, doi: 10.7498/aps.56.2709
    [12] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, doi: 10.7498/aps.55.1153
    [13] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, doi: 10.7498/aps.54.4754
    [14] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, doi: 10.7498/aps.53.620
    [15] 康艳梅, 徐健学, 谢 勇. 单模非线性光学系统的弛豫速率与随机共振. 物理学报, doi: 10.7498/aps.52.2712
    [16] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, doi: 10.7498/aps.51.2281
    [17] 刘红军, 陈国夫, 赵卫, 王屹山, 赵尚弘. 用光学参量啁啾脉冲放大技术产生TW级激光脉冲系统的最优化设计. 物理学报, doi: 10.7498/aps.50.1717
    [18] 王海, 郜江瑞, 谢常德, 彭堃墀. 非简并光学参量振荡腔非稳特性研究. 物理学报, doi: 10.7498/aps.44.1563
    [19] 刘正东. 光学腔内光子数态的形成与条件. 物理学报, doi: 10.7498/aps.40.210
    [20] 赵勇, 霍裕平. 非线性环形光学腔中分岔混沌的新行为. 物理学报, doi: 10.7498/aps.36.909
计量
  • 文章访问数:  53
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-12

/

返回文章
返回