搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

克尔介质单模腔中光学参量放大与驱动力协同的光子阻塞效应

张志强

引用本文:
Citation:

克尔介质单模腔中光学参量放大与驱动力协同的光子阻塞效应

张志强

Photon blockade effect from synergistic optical parametric amplification and driving force in Kerr-medium single-mode cavity

ZHANG Zhiqiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过解析求解与数值模拟相结合的方法, 研究了由克尔介质单模腔与光学参量放大器组成的混合量子系统中光子阻塞效应的调控机制. 建立了包含腔场衰减的有效哈密顿量主方程, 采用Fock态基矢展开至双光子截断近似, 解析求解稳态薛定谔方程获得了光子阻塞最佳条件. 通过对比数值模拟结果与解析结果, 解析结果与等时二阶关联函数的数值模拟高度一致, 验证了理论的正确性. 研究结果表明, 在参数适当的条件下, 系统中可以存在光子阻塞. 系统处于共振时, 平均光子数显著增加, 这对实现高亮度的单光子源十分必要. 进一步的驱动相位变化可导致最佳阻塞区域在驱动力强度与光学参量放大器非线性系数F-G参数二维平面发生位移甚至最佳光子阻塞区域形成的抛物线开口方向发生反转, 数值结果和理论结果均证实了驱动力相位对光子阻塞效应的调控作用. 值得一提的是, 在克尔非线性强度在宽参数范围内, 系统始终存在显著的光子阻塞效应, 展现出典型的普适光子阻塞特征. 物理机制分析表明, 光子阻塞源于系统两条光子跃迁路径在特定参数下的量子干涉相消, 有效地抑制了双光子激发. 克尔非线性虽调制系统能级但不影响量子干涉路径, 使光子阻塞效应在宽参数范围内保持稳定.
    By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an optical parametric amplifier (OPA).To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, which considers single-mode cavity decay. In order to obtain analytical solutions under optimal photon blockade conditions, the quantum state of the system is expanded to the two-photon level based on the Fock state, and the steady-state probability amplitudes are derived by solving the Schrödinger equation, thereby yielding analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system at appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.The numerical results show that the average photon number significantly increases under resonant conditions, providing theoretical support for optimizing single-photon source brightness, which is essential for achieving high-brightness single-photon sources.Furthermore, variations in the driving phase can cause the optimal photon blockade region to shift in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.Additionally, the influence of Kerr nonlinearity is examined. The results show that photon blockade persists robustly over a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the energy levels of the system, it does not affect the quantum interference pathways, thus keeping the photon blocking effect stable over a wide parameter range.
  • 图 1  等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随不同物理量之间的变化图像 (a) 等时二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$的对数值随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化, 其他参数设置为$\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$和${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$; (b) ${g^{\left( 2 \right)}}\left( 0 \right)$的对数值光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$和驱动力相位${\phi _a}$的变化关系图像, 其他参数设置为${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } = 0.1$和${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$. 两幅图中的白色虚线, 由方程(13)给出, 表示光子阻塞最佳条件的解析结果

    Fig. 1.  Logarithmic value of the equal-time second-order correlation function $ {g^{\left( 2 \right)}}\left( 0 \right) $ versus different physical parameters are presented: (a) Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier, where c and ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$; (b) logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ and the driving phase $ \phi $, where ${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } = 0.1$ and ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$. In both figures, the white dashed lines, derived from Eq. (13), indicate the analytical solutions corresponding to the optimal conditions for photon blockade.

    图 2  系统的平均光子数的对数$ \lg \left[ N \right] $随不同参数的变化 (a) 不同驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化; (b) 不同光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随驱动力相位$\phi $的变化; (c) 不同光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化; (d) 不同克尔非线性强${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化

    Fig. 2.  Logarithmic value of the average photon number $ N $ versus different parameters: (a) $ \lg \left[ N \right] $ as a function of detuning ${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$ at different driving strengths ${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$; (b) phase dependence of $ \lg \left[ N \right] $ under varying of the optical parametric amplifier nonlinear coefficients ${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$; (c) detuning dependence of $ \lg \left[ N \right] $ for different optical parametric amplifier nonlinear coefficients ${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$; (d) $ \lg \left[ N \right] $ versus detuning ${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$ at distinct Kerr nonlinearity strengths ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$.

    图 3  不同驱动力相位$\phi $情况下, 等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化 (a) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$; (b) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 6}} \right. } 6}$; (c) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 4}} \right. } 4}$; (d) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 3}} \right. } 3}$; (e) $\phi = {{{{5\pi }}} \mathord{\left/ {\vphantom {{{{5\pi }}} {12}}} \right. } {12}}$; (f) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2}$. 图中的白色虚线由方程(13)给出, 表示光子阻塞最佳条件的解析结果. 克尔非线性强度均设置为${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$

    Fig. 3.  Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier under different driving phases $\phi $: (a) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$; (b) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 6}} \right. } 6}$; (c) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 4}} \right. } 4}$; (d) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 3}} \right. } 3}$; (e) $\phi = {{{{5\pi }}} \mathord{\left/ {\vphantom {{{{5\pi }}} {12}}} \right. } {12}}$; (f) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2}$. In all panels, the white dashed lines, derived from Eq. (13), represent the analytical solutions for the optimal photon blockade conditions. The Kerr nonlinearity strength was consistently set to ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$ in the numerical simulations.

    图 4  不同克尔非线性强度${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$情况下, 等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化图像 (a) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.1$; (b) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 1.0$; (c) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 2.0$; (d) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 5.0$. 图中的虚线由方程(13)给出, 表示光子阻塞最佳条件的解析结果

    Fig. 4.  Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier under different Kerr nonlinearity strength ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$: (a) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.1$; (b) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 1.0$; (c) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 2.0$; (d) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 5.0$. In all panels, the white dashed lines, derived from Eq. (13), represent the analytical solutions for the optimal photon blockade conditions.

    图 5  系统能级及不同光子态间跃迁路径的示意图 (a) 系统能级示意图; (b) 系统光子态跃迁路径示意图

    Fig. 5.  Schematic diagram of the system energy-level and the transition paths between different photon states: (a) Energy level diagram; (b) photon state transition pathways.

  • [1]

    Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279Google Scholar

    [2]

    Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602Google Scholar

    [3]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [4]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601Google Scholar

    [5]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602Google Scholar

    [6]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387Google Scholar

    [7]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713Google Scholar

    [8]

    Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108Google Scholar

    [9]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643Google Scholar

    [10]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [11]

    Flayac H, Savona V 2017 Phys. Rev. A 96 053810Google Scholar

    [12]

    Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714Google Scholar

    [13]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715Google Scholar

    [14]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [16]

    李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203Google Scholar

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203Google Scholar

    [17]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601Google Scholar

    [18]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602Google Scholar

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [20]

    Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030Google Scholar

    [21]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [22]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [23]

    Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089Google Scholar

    [24]

    Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879Google Scholar

    [25]

    Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187Google Scholar

    [26]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707Google Scholar

    [27]

    Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304Google Scholar

    [28]

    Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123Google Scholar

    [29]

    Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203Google Scholar

    [30]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [31]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [32]

    Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707Google Scholar

    [33]

    Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204Google Scholar

    [34]

    Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021Google Scholar

    [35]

    Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029Google Scholar

    [36]

    Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202Google Scholar

    [37]

    Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714Google Scholar

    [38]

    Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424Google Scholar

    [39]

    Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818Google Scholar

    [40]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043Google Scholar

    [41]

    Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512Google Scholar

    [42]

    Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707Google Scholar

    [43]

    Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065

    [44]

    Tan S M 1999 J. Opt. B 1 424Google Scholar

    [45]

    Tan S M Quantum Optics Toolbox for MATLAB [2012-12-21]

    [46]

    张志强 2025 激光与光电子学进展 62 0719001Google Scholar

    Zhang Z Q 2025 Laser Optoelectron. Prog. 62 0719001Google Scholar

    [47]

    Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723Google Scholar

    [48]

    Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402Google Scholar

    [49]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601Google Scholar

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, doi: 10.7498/aps.71.20220691
    [2] 刘雪莹, 成书杰, 高先龙. 完备Buck-Sukumar模型的光子阻塞效应. 物理学报, doi: 10.7498/aps.70.20220238
    [3] 陈海霞, 林书玉. 非线性声场中的参量激发. 物理学报, doi: 10.7498/aps.70.20202093
    [4] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, doi: 10.7498/aps.69.20200890
    [5] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞. 物理学报, doi: 10.7498/aps.68.20190154
    [6] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, doi: 10.7498/aps.64.094203
    [7] 罗尧天, 唐昌建. 光子带隙谐振腔回旋管振荡器的自洽非线性理论. 物理学报, doi: 10.7498/aps.60.014104
    [8] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究. 物理学报, doi: 10.7498/aps.59.2525
    [9] 赖柏辉, 杜刚, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性产生四光子偏振态簇态. 物理学报, doi: 10.7498/aps.59.1017
    [10] 杨 健, 任 珉, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性效应实现纠缠转移. 物理学报, doi: 10.7498/aps.57.887
    [11] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, doi: 10.7498/aps.56.2709
    [12] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, doi: 10.7498/aps.55.1153
    [13] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, doi: 10.7498/aps.54.4754
    [14] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, doi: 10.7498/aps.53.620
    [15] 康艳梅, 徐健学, 谢 勇. 单模非线性光学系统的弛豫速率与随机共振. 物理学报, doi: 10.7498/aps.52.2712
    [16] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, doi: 10.7498/aps.51.2281
    [17] 刘红军, 陈国夫, 赵卫, 王屹山, 赵尚弘. 用光学参量啁啾脉冲放大技术产生TW级激光脉冲系统的最优化设计. 物理学报, doi: 10.7498/aps.50.1717
    [18] 王海, 郜江瑞, 谢常德, 彭堃墀. 非简并光学参量振荡腔非稳特性研究. 物理学报, doi: 10.7498/aps.44.1563
    [19] 刘正东. 光学腔内光子数态的形成与条件. 物理学报, doi: 10.7498/aps.40.210
    [20] 赵勇, 霍裕平. 非线性环形光学腔中分岔混沌的新行为. 物理学报, doi: 10.7498/aps.36.909
计量
  • 文章访问数:  390
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-06-10
  • 上网日期:  2025-06-12

/

返回文章
返回