-
通过解析求解与数值模拟相结合的方法,研究了由克尔介质单模腔与光学参量放大器组成的混合量子系统中光子阻塞效应的调控机制。建立了包含腔场衰减的有效哈密顿量主方程,采用Fock态基矢展开至双光子截断近似,解析求解稳态薛定谔方程获得了光子阻塞最佳条件。通过对比数值模拟结果与解析结果,解析结果与等时二阶关联函数的数值模拟高度一致,验证了理论的正确性。研究结果表明,在参数适当的条件下,系统中可以存在光子阻塞。系统处于共振时,平均光子数显著增加,这对实现高亮度的单光子源十分必要。进一步的驱动相位变化可导致最佳阻塞区域在驱动力强度与光学参量放大器非线性系数F-G参数二维平面发生位移甚至最佳光子阻塞区域形成的抛物线开口方向发生反转,数值结果和理论结果均证实了驱动力相位对光子阻塞效应的调控作用。值得一提的是,在克尔非线性强度在宽参数范围内,系统始终存在显著的光子阻塞效应,展现出典型的普适光子阻塞特征。物理机制分析表明,光子阻塞源于系统两条光子跃迁路径在特定参数下的量子干涉相消,有效抑制了双光子激发。克尔非线性虽调制系统能级但不影响量子干涉路径,使光子阻塞效应在宽参数范围内保持稳定。By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an Optical Parametric Amplifier (OPA).
To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, accounting for single-mode cavity decay. To obtain analytical solutions for optimal photon blockade conditions, the quantum state of the system is expanded in the Fock state basis up to the two-photon level, and the steady-state probability amplitudes are derived by solving the Schrödinger equation. This yields analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system under appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.
Numerical results demonstrate a significant enhancement in the average photon number under resonant conditions, providing theoretical support for optimizing singlephoton source brightness, which is essential for achieving high-brightness singlephoton sources.
Furthermore, variations in the driving phase can induce displacement of the optimal photon blockade region in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.
Additionally, the influence of Kerr nonlinearity is examined. Results show that photon blockade persists robustly across a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.
Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the system's energy levels, it does not affect the quantum interference pathways, enabling the photon blockade effect to remain stable across a wide parameter range. -
[1] Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279
[2] Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602
[3] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[4] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601
[5] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602
[6] Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387
[7] Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713
[8] Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108
[9] Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643
[10] Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802
[11] Flayac H, Savona V 2017 Phys. Rev. A 96 053810
[12] Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714
[13] Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715
[14] Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601
[15] Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467
[16] Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203]
[17] Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601
[18] Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602
[19] Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819
[20] Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030
[21] Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808
[22] Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838
[23] Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089
[24] Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879
[25] Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187
[26] Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707
[27] Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304
[28] Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123
[29] Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203
[30] Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601
[31] Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826
[32] Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707
[33] Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204
[34] Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021
[35] Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029
[36] Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202
[37] Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714
[38] Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424
[39] Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818
[40] Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043
[41] Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512
[42] Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707
[43] Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065
[44] Tan S M 1999 J. Opt. B 1 424
[45] Tan S M 2012-12-21 Quantum Optics Toolbox for MATLAB
[46] Zhang Z Q. 2025 Laser & Optoelectronics Progress, 62 0719001 (in Chinese) [张志强 2025 激光与光电子学进展 62 0719001]
[47] Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723
[48] Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402
[49] Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601
计量
- 文章访问数: 53
- PDF下载量: 1
- 被引次数: 0