-
本文基于人工智能算法提出了一种宽稳区大模场激光振荡器的优化设计方法。通过构建谐振腔的光场传播模型,设计了多目标优化函数,并利用人工智能算法对腔段长度、透镜焦距及高斯镜选型多个维度进行全局优化。在设定的热焦距范围内,本文对模拟退火、粒子群优化和遗传算法等多种算法进行了比对,最终实现了复杂多维参数空间中最优解的高效搜索。经过实验验证,优化后的谐振腔在长度为540mm的腔长范围内实现了100Hz,190mJ,光束质量为Mx2=2.1,My2=1.9的7ns脉宽的激光输出。优化后的谐振腔热稳定曲线在大模场运转区间的斜率显著变缓,有效扩大了谐振腔的热稳区,从而保障了高重复频率激光器的稳定运行。该研究有望为宽稳区大模场纳秒激光振荡器的设计提供参考。This study presents an optimization method for a wide stable-zone, large mode field operation nanosecond laser oscillator based on artificial intelligence algorithms. The work is motivated by the need of the large mode field laser cavities in compact size with variable thermal focal length. A physics model of light field propagation inside the resonator is established, incorporating thermal lensing tolerance. A multi-objective optimization function is designed to balance the beam quality, thermal stability, and cavity compactness simultaneously. Several algorithms, including simulated annealing, particle swarm optimization, and genetic algorithms are compared, and ultimately achieves efficient searching for optimal solutions in complex multi-dimensional parameter spaces. In system design, the cavity segment lengths, intracavity lens, and Gaussian mirror (VRM) parameters are optimized. Accordingly, the optimized cavity structure is experimentally implemented and Q-switched operated. The results demonstrate stable laser output at 100 Hz repetition rate with 190 mJ pulse energy and 7 ns pulse width, and beam quality factors Mx2 = 2.1 and My2 = 1.9 respectively, and the total length of the cavity is only 540mm which demonstrates the compactness of laser design. Furthermore, numerical simulations were conducted to compare a variety of resonator configurations and assess the impact of different parameters to the cavity’s thermal stability. After the optimization, the thermal stability curve of the laser resonator shows a significantly slope reduction near the large-mode-field region, indicating improved thermal length adaptability. This enhancement is crucial for ensuring long-term stable operation of high-repetition-rate nanosecond laser oscillators. In conclusion, this study provides an efficient approach to the design of compact, thermally stable, large-mode-area resonators, offering valuable insights for compact laser design with high power output.
-
Keywords:
- Solid-state Laser /
- Large Mode Area /
- Artificial Intelligence /
- Multi-parameter Optimization
-
[1] Zhu Z, Lv S, Zhang H, Hui Y, Lei H, Li Q 2021 Opt. Express 29 32325
[2] Li C, Lu C, Li C, Yang N, Li Y, Yang Z, Han S, Shi J, Zhou Z 2017 Opt. Commun. 394 1
[3] Li C, Lu C, Li C, Zang Y, Yang Z, Han S, Li Y, Yang N, Shi J, Zhou Z 2017 Opt. Eng. 56 116115
[4] Fan Z W, Qiu J S, Kang Z J, Chen Y Z, Ge W Q, Tang X X 2017 Light-Sci. Appl. 6 e17004
[5] Lu S, Gao M, Yang Y, Zhu R, Hou X, Sun J, Chen W, Zhu X 2019 Appl. Optics 58 7517
[6] Qi Y, Zhu X, Lou Q, Ji J, Dong J, Wei R 2007 J. Opt. Soc. Am. B-Opt. Phys. 24 1042
[7] Shen X, Zhou H, Zhen R L, Zhen J J, Wei W 2015 Acta Phys. Sin. 64 024210(沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 物理学报. 64 024210)
[8] Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204(周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 物理学报 72 014204)
[9] Murdough M P, Denman C A 1996 Appl. Optics 35 5925
[10] Cerullo G, Desilvestri S, Magni V, Svelto O 1993 Opt. Quantum Electron. 25 489
[11] Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171
[12] He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 094217(何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 094217)
[13] Siegman A E 1974 Appl. Opt., AO 13 353
[14] Liu Q, Liu J, Gong M 2011 Appl. Optics 50 1186
[15] Han C H, Mu Y; Luo, H, Han L, Fang C, Wang S B, Wei L 2024 Laser & Infrared 179(韩昌昊, 穆宇, 罗辉, 韩隆, 方聪, 王思博, 魏磊 2024 激光与红外 179)
[16] Hauck R, Kortz H P, Weber H 1980 Appl. Opt., AO 19 598
[17] Woodward R I, Kelleher E J R 2016 Sci Rep 6 37616
[18] Fang Z, Pu G, Xu Y, Hu W, Yi L 2023 Opt. Express 31 41794
[19] Shi H, Fan R, He C, Wang J, Yang S, Xu M, Sun H, Li Y, Fu Q 2024 Photonics 11 164
[20] Liu Z, Dang Z, Liu Z, Li Y, He X, Dai Y, Chen Y, Peng P, Fang Z 2023 Photonics Res. 11 695
[21] Wang N, Lu Y T 2004 Chin. J. Lasers 1317(王宁,陆雨田 2004 中国激光 1317)
[22] Kirkpatrick S, Gelatt C, Vecchi M 1983 Science 220 671
[23] Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118
[24] Shapiro J 2001 Machine learning and its applications: advanced lectures Berlin, Heidelberg , 2001 pp146-168
[25] Li X P, Yang J, Zhang M S, Yang T L, Wang X J, Peng Q J 2022 Chin. Phys. B 31 084207
计量
- 文章访问数: 41
- PDF下载量: 2
- 被引次数: 0