搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于去噪概率扩散模型的蝠鲼流场智能化预测研究

白靖宜 黄桥高 高鹏骋 问昕 褚勇

引用本文:
Citation:

基于去噪概率扩散模型的蝠鲼流场智能化预测研究

白靖宜, 黄桥高, 高鹏骋, 问昕, 褚勇

Intelligent prediction of manta ray flow field based on a denoising probabilistic diffusion model

BAI Jingyi, HUANG Qiaogao, GAO Pengcheng, WEN Xin, CHU Yong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为解决传统数值模拟方法在蝠鲼三维柔性大变形流场仿真中计算资源与时间上的局限性, 本文提出一种基于去噪概率扩散模型的生成式人工智能方法(surf-DDPM), 通过输入运动参数变量组, 预测蝠鲼表面流场. 首先, 采用浸入边界法和球函数气体动理学格式(IB-SGKS)建立蝠鲼扑动模态的数值计算方法, 获取了在0.3—0.9 Hz频率和0.1—0.6倍体长幅值条件下共180组非定常流场数据集. 其次, 构建了噪声扩散过程的马尔科夫链和去噪生成过程的神经网络模型, 并将运动参数与扩散时间步标签嵌入网络, 完成模型训练. 最后, 验证了神经网络超参数对模型预测的影响, 并可视化了未参与训练的多扑动姿态压力场和速度场预测结果, 进行预报结果准确性、不确定度与预测效率量化分析. 结果显示, 该模型实现了具有大跨度高维上采样特征的蝠鲼表面流场数据的快速准确预测, 预报结果全部位于95%置信区间内, 单工况预测相较CFD方法效率提升99.97%.
    The manta ray is a large marine species, which has the ability of gliding efficiently and flapping rapidly. It can autonomously switch between various motion modes, such as gliding, flapping, and group swimming, based on ocean currents and seabed conditions. To address the computational resource and time constraints of traditional numerical simulation methods in modeling the manta ray’s three-dimensional (3D) large-deformation flow field, this study proposes a novel generative artificial intelligence approach based on a denoising probabilistic diffusion model (surf-DDPM). This method predicts the surface flow field of the manta ray by inputting a set of motion parameter variables. Initially, we establish a numerical simulation method for the manta ray’s flapping mode by using the immersed boundary method and the spherical function gas kinetic scheme (IB-SGKS), generating an unsteady flow dataset comprising 180 sets under frequency conditions of 0.3–0.9 Hz and amplitude conditions of 0.1–0.6 body lengths. Data augmentation is then performed. Subsequently, a Markov chain for the noise diffusion process and a neural network model for the denoising generation process are constructed. A pretrained neural network embeds the motion parameters and diffusion time step labels into the flow field data, which are then fed into a U-Net for model training. Notably, a transformer network is incorporated into the U-Net architecture to enable the handling of long-sequence data. Finally, we examine the influence of neural network hyperparameters on model performance and visualize the predicted pressure and velocity fields for multi-flapping postures that were not included in the training set, followed by a quantitative analysis of prediction accuracy, uncertainty, and efficiency. The results demonstrate that the proposed model achieves fast and accurate predictions of the manta ray’s surface flow field, characterized by extensive high-dimensional upsampling. The minimum PSNR value and SSIM value of the predictions are 35.931 dB and 0.9524, respectively, with all data falling within the 95% prediction interval. Compared with CFD simulations, the single-condition simulations by using AI model show that the prediction efficiency is enhanced by 99.97%.
  • 图 1  蝠鲼模型与流场网格划分

    Fig. 1.  Manta ray model and flow field mesh partitioning.

    图 2  蝠鲼模型单周期运动

    Fig. 2.  Single-cycle motion process of the manta ray simulation mode.

    图 3  仿真结果准确性验证

    Fig. 3.  Accuracy validation of the simulation results.

    图 4  不同扑动频率对应CFD仿真时间步数

    Fig. 4.  CFD simulation time steps corresponding to different flapping frequencies.

    图 5  蝠鲼表面流场数值模拟压力与速度场云图

    Fig. 5.  Numerical simulation of pressure and velocity fields on manta ray surface flow.

    图 6  原始数据填充与归一化处理结果对比

    Fig. 6.  Comparison of original data padding and normalized processing results.

    图 7  去噪扩散概率模型原理

    Fig. 7.  Principle of the denoising diffusion probabilistic model.

    图 8  surf-DDPM神经网络算法框图 (a)运动参数与噪声扩散时间步嵌入模块; (b) U-Net去噪生成模块; (c) Transformer自注意力机制模块

    Fig. 8.  Surf-DDPM neural network algorithm flowchart: (a) Motion parameters and noise diffusion time step embedding module; (b) U-Net denoising generation module; (c) transformer self-attention mechanism module.

    图 9  超参数影响分析 (a)噪声调度时间表函数影响; (b) U-Net的网络层数影响; (c)噪声扩散步数影响

    Fig. 9.  Hyperparameter impact analysis: (a) Effect of noise scheduling function on results; (b) impact of U-Net network depth on performance; (c) effect of noise diffusion steps on generation quality.

    图 10  内插测试工况压力与速度场预测结果与误差 (a), (d), (g)压力场CFD计算真值; (b), (e), (h) surf-DDPM人工智能模型预测结果; (c), (f), (i)预测值误差云图; (j), (m), (p)速度场CFD计算真值; (k), (n) (q) surf-DDPM人工智能模型预测结果; (l), (o), (r)预测值误差云图

    Fig. 10.  Predicted results and errors of surface pressure and velocity fields for the interpolation test case: (a) True values of dynamic pressure field from CFD simulations; (b) predictions from surf-DDPM AI model; (c) contour of absolute error; (d) true values of velocity flow field from CFD simulations; (e) predictions from surf-DDPM AI model; (f) contour of absolute error.

    图 11  外推测试工况压力场与速度场预测结果与误差 (a), (d), (g)压力场CFD计算真值; (b), (e), (h) surf-DDPM人工智能模型预测结果; (c), (f), (i)预测值误差云图; (j), (m), (p)速度场CFD计算真值; (k), (n) (q) surf-DDPM人工智能模型预测结果; (l), (o), (r)预测值误差云图

    Fig. 11.  Predicted results and errors of surface pressure and velocity fields for the extrapolation test case: (a) True values of dynamic pressure field from CFD simulations; (b) predictions from surf-DDPM AI model; (c) contour of absolute error; (d) true values of velocity flow field from CFD simulations; (e) predictions from surf-DDPM AI model; (f) contour of absolute error.

    图 12  翼尖位置网格节点流场预测结果95%置信区间 (a) d1姿态压力场; (b) d1姿态速度场; (c) d3姿态压力场; (d) d3姿态速度场

    Fig. 12.  95% Prediction intervals for flow field predictions at wingtip locations: (a) Dynamic pressure field for d1 configuration; (b) velocity field for d1 configuration; (c) dynamic pressure field for d3 configuration; (d) velocity field for d3 configuration.

    表 1  不同扑动频率对应数据提取起始与间隔时间步

    Table 1.  Starting times and interval steps for data extraction at different flapping frequencies.

    扑动频率/Hz起始时间步间隔时间步
    0.31139057
    0.5683835
    0.6569829
    0.7488425
    0.9379919
    下载: 导出CSV

    表 2  流场预测结果准确性定量分析

    Table 2.  Quantitative analysis of accuracy in flow field predictions.

    预测结果内插测试工况外推测试工况
    RMSEPSNR/dBSSIMRMSEPSNR/dBSSIM
    d1-P0.022437.0310.96790.026336.0850.9598
    d2-P0.012238.2030.97540.023336.5560.9624
    d3-P0.021437.4860.96880.020836.3870.9533
    d1-U0.024536.4750.96130.027235.9020.9587
    d2-U0.014638.8110.98130.026135.2410.9496
    d3-U0.025035.9310.95240.030135.1580.9571
    下载: 导出CSV

    表 3  CFD与人工智能方法预测流场效率对比

    Table 3.  Comparison of flow field prediction efficiency between CFD and surf-DDPM methods.

    扑动频率/HzCFD/核时AI训练/卡时AI预测/秒
    0.31202430
    0.572
    0.660
    0.748
    0.936
    下载: 导出CSV
  • [1]

    王亮 2007 博士学位论文 (南京: 河海大学)

    Wang L 2007 Ph. D. Dissertation (Nanjing: Hehai University

    [2]

    Asada T, Furuhashi H 2024 Ocean Eng. 308 118261Google Scholar

    [3]

    Xing C, Yin Z, Xu H, Cao Y, Qu Y, Huang Q 2024 Ocean Eng. 312 119039Google Scholar

    [4]

    Bao T, Cao Y, Cao Y H, Lu Y, Pan G, Huang Q G 2024 Ocean Eng. 309 118377Google Scholar

    [5]

    Dong H, Bozkurttas M, Mittal R, Madden P, Laude G V 2010 J. Fluid Mech. 645 34

    [6]

    Huang Z, Menzer A, Guo J, Dong H 2024 Bioinspir Biomim 19 026004Google Scholar

    [7]

    Wang S, Gao P, Huang Q G, Pan, G, Tian, X 2024 Ocean Eng. 294 116799Google Scholar

    [8]

    Gao P C, Song B, Huang Q G, Tian X S, Pan G, Chu Y, Bai J Y 2024 Ocean Eng. 313 119415Google Scholar

    [9]

    Gao P C, Huang Q G, Pan G, Cao Y, Luo Y 2023 Ocean Eng. 278 114389Google Scholar

    [10]

    Miyanawala T P, Li Y, Law Y Z 2024 Ocean Eng. 306 118003Google Scholar

    [11]

    Li G, Zhu H, Jian H 2023 J. Hydrol. 625 130025Google Scholar

    [12]

    战庆亮, 葛耀君, 白春锦 2022 物理学报 71 074701Google Scholar

    Zhan Q L, Ge Y J, Bai C J 2022 Acta Phys. Sin. 71 074701Google Scholar

    [13]

    Wang Z, Zhang W 2023 Phys. Fluids 35 025124Google Scholar

    [14]

    Qiu C C, Huang Q G, Pan G 2023 Phys. Fluids 35 017132Google Scholar

    [15]

    Xia Y, Li T, Wang Q, Yue J, Peng B, Yi X 2024 Phys. Fluids 36 103313Google Scholar

    [16]

    Li R, Song B, Chen Y 2024 Ocean Eng. 304 117857Google Scholar

    [17]

    Caraccio P, Marseglia G, Lauria A 2024 Phys. Fluids 36 107120Google Scholar

    [18]

    Qiu C C, Huang Q G, Pan G 2023 Ocean Eng. 281 114555Google Scholar

    [19]

    Gao H, Gao L, Shi Z, Sun D, Sun X 2024 Aerosp. Sci. Technol. 147 108977Google Scholar

    [20]

    Lin H, Jiang X, Deng X 2024 Thinking Skills and Creativity 54 101649Google Scholar

    [21]

    Kartashov N, Vlassis N N 2024 arXiv: 2409.14473

    [22]

    Zhao Z X, Bai H W, Zhu Y Z, Zhang J S, Xu S A, Zhang Y L, Zhang K, Meng D, Timofte R, Van Gool L 2023 Proceedings of the IEEE/CVF International Conference on Computer Vision Paris, France, October 2–6, 2023 p8048

    [23]

    Ho J, Jain A, Abbeel P 2020 Adv. Neural Inf. Process. Syst. 33 6840

    [24]

    Rombach R, Blattmann A, Loren D, Esser P, Ommer B 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, June 18–24, 2022 p10674

    [25]

    Song J, Meng C, Ermon S 2020 arXiv: 2010.02502

    [26]

    Nichol A, Dhariwal P, Ramesh A, Shyam P, Mishkin P, McGrew B 2021 arXiv: 2112.10741

    [27]

    Huang L, Zheng C, Chen Y 2024 Phys. Fluids 36 095113Google Scholar

    [28]

    Rybchuk A, Hassanaly M, Hamilton N 2023 Phys. Fluids 35 126604Google Scholar

    [29]

    Gao P C, Tian X, Huang Q G 2024 Phys. Fluids 36 011902Google Scholar

    [30]

    Gao P C, Huang Q G, Pan G 2023 Phys. Fluids 35 061909Google Scholar

    [31]

    张栋 2020 博士学位论文 (西安: 西北工业大学)

    Zhang D 2020 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统. 物理学报, doi: 10.7498/aps.74.20250322
    [2] 高鹏骋, 田徐顺, 黄桥高, 潘光, 褚勇. 蝠鲼交错排布集群游动水动力性能. 物理学报, doi: 10.7498/aps.73.20240399
    [3] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, doi: 10.7498/aps.72.20230036
    [4] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, doi: 10.7498/aps.72.20221889
    [5] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, doi: 10.7498/aps.72.20230208
    [6] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵. 量子人工智能中的对抗学习. 物理学报, doi: 10.7498/aps.70.20210789
    [7] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, doi: 10.7498/aps.69.20191935
    [8] 刘全, 于明, 林忠, 王瑞利. 流体力学拉氏守恒滑移线算法设计. 物理学报, doi: 10.7498/aps.64.194701
    [9] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述. 物理学报, doi: 10.7498/aps.63.165202
    [10] 陈延佩, Pierre Evesque, 厚美瑛. 振动驱动颗粒气体体系的局域态本构关系的实验验证. 物理学报, doi: 10.7498/aps.62.164503
    [11] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究. 物理学报, doi: 10.7498/aps.62.024706
    [12] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, doi: 10.7498/aps.61.219402
    [13] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, doi: 10.7498/aps.61.115203
    [14] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, doi: 10.7498/aps.59.3817
    [15] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型. 物理学报, doi: 10.7498/aps.55.6382
    [16] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, doi: 10.7498/aps.54.812
    [17] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, doi: 10.7498/aps.50.2398
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟. 物理学报, doi: 10.7498/aps.45.1138
    [19] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, doi: 10.7498/aps.45.595
    [20] 刘慕仁, 孔令江, 江峰. Frish-Hasslecher-Pomeau流体力学模型的平均自由程. 物理学报, doi: 10.7498/aps.40.1736
计量
  • 文章访问数:  314
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-26
  • 修回日期:  2025-03-28
  • 上网日期:  2025-04-01

/

返回文章
返回