-
量子通信和量子传感分别利用量子系统的独特特性, 比如量子态的叠加性或量子纠缠特性等, 能够实现信息论安全的通信以及对物理量的高精度测量. 量子通信和量子传感, 作为当前最接近实用化的两种量子技术, 成为学术界的研究热点. 然而, 这两种技术在走向实用化的过程中也面临着诸多挑战, 例如: 设备缺陷导致现实安全性问题, 环境噪声干扰大导致测量精度降低等, 使得系统的大规模部署受到严重限制. 人工智能凭借其强大的算力和数据处理能力, 已经在通信、计算和成像等领域发挥着重要作用. 本文首先综述了人工智能与量子通信和量子传感交叉领域的发展现状, 包括人工智能在量子密钥分发、量子存储、量子网络、量子传感等方向的具体结合与应用, 为提升系统的可靠性、安全性、智能化与可扩展性等方面提供了强有力的保障. 接着分析了人工智能在赋能量子通信和量子传感系统中目前存在的问题, 最后对该领域未来的发展前景进行了展望和讨论.
Quantum communication and quantum sensing, which leverage the unique characteristics of quantum systems, enable information-theoretically secure communication and high-precision measurement of physical quantities. They have attracted significant attention in recent research. However, they both face numerous challenges on the path to practical application. For instance, device imperfections may lead to security vulnerability, and environmental noise may significantly reduce measurement accuracy. Traditional solutions often involve high computational complexity, long processing time, and substantial hardware resource requirements, posing major obstacles to the large-scale deployment of quantum communication and quantum sensing networks. Artificial intelligence (AI), as a major technological advancement in current scientific landscape, offers powerful data processing and analytical capabilities, providing new ideas and methods for optimizing and enhancing quantum communication and sensing systems. Significant progresses have been made in applying AI to quantum communication and sensing, thus injecting new vitality into these cutting-edge technologies. In quantum communication, AI techniques have greatly improved the performance and security of quantum key distribution, quantum memory, and quantum networks through parameter optimization, real-time feedback control, and attack detection. In quantum sensing, quantum sensing technology enables ultra-high sensitivity detection of physical quantities such as time and magnetic fields. The introduction of AI has opened up new avenues for achieving high-precision and high-sensitivity quantum measurements. With AI, sensor performance is optimized, and measurement accuracy is further enhanced through data analysis. This paper also analyzes the current challenges in using AI to empower quantum communication and sensing systems, such as implementing efficient algorithm deployment and system feedback control under limited computational resources, and addressing complex task environments, dynamically changing scenarios, and multi-task coordination requirements. Finally, this paper discusses and envisions future development prospects in this field. -
Keywords:
- artificial intelligence /
- machine learning /
- quantum communication /
- quantum sensing
-
图 5 基于ANN的量子攻击检测模型[37] (a)一个没有隐藏层的线性人工神经网络模型, 只能解决线性可分问题; (b)一个带有隐藏层的非线性ANN模型, 用于对不同类型的量子攻击进行分类
Fig. 5. ANN-based quantum attack detection model [37]: (a) A linear ANN model without the hidden layer which can only solve linear separable problems; (b) a nonlinear ANN model with a hidden layer to classify different types of quantum attacks.
图 7 机器学习算法的详细流程示意图[46], 输入数据集(离散化的驱动场)不断地进行调整, 直到输出值和目标值之间的误差(强化学习算法中的反馈信号)降低到足够小的水平
Fig. 7. Detailed schematic of the ML algorithm [46], the input dataset (discrete control laser pulse) iteratively adjusts itself until the error (feedback in training) between the estimated output and the target value becomes small enough.
表 1 人工智能在DV-QKD中的应用对比
Table 1. Comparison of artificial intelligence applications in DV-QKD.
应用领域 方法 主要贡献 参考文献 参数优化 随机森林 预测MDI-QKD和BB84-QKD协议的最优参数 [24] 参数优化 神经网络 直接预测QKD系统最优参数 [25] 参数优化 极端梯度提升 预测TF-QKD的优化参数, 效率和准确性优于RF和BPNN [27] 参数优化和系统校准 反向传播神经网络 预测系统最优参数, 同时实现了大规模MDI-QKD网络中的实时校准 [26] 相位校准 长短记忆网络 预测设备物理参数, 实时进行BB84-QKD系统的相位校准 [28] 相位校准 长短记忆网络 预测MDI-QKD系统中两个用户的相位漂移, 实时主动补偿 [29] 相位校准 长短记忆网络 预测TF-QKD系统相位漂移, 实现主动反馈控制 [30] 设备缺陷和攻击检测 随机森林 实时检测设备缺陷和攻击, 准确率高达98% [31] 表 2 人工智能在CV-QKD中的应用对比
Table 2. Comparison of artificial intelligence applications in CV-QKD.
应用领域 方法 主要贡献 参考文献 参数优化 支持向量回归 预测系统物理参数, 优化QKD系统性能和安全性 [32] 参数优化 反向传播神经网络 调整调制方差, 确保系统安全, 有效地提高了密钥率 [33] 参数优化 机器学习框架 控制相位噪声, 优化调制方差, 实现100公里光纤通道上的密钥分发 [39] 密钥率预测 多标签分类算法 通过多标签分类算法区分相干态, 优于现有离散调制CV-QKD协议 [34] 密钥率预测 神经网络 快速预测离散调制CV-QKD协议的密钥率, 速度和准确性优于传统数值方法 [35,36] 攻击检测 人工神经网络 自动识别和分类攻击类型, 准确率和召回率超过99% [37] 攻击检测 密度聚类和多类支持向量机 高效检测量子黑客攻击, 修正密钥率高估问题, 提供更紧致的安全边界 [38] 表 3 人工智能在量子传感中的应用对比
Table 3. Comparison of artificial intelligence applications in quantum sensing.
应用领域 方法 主要贡献 参考文献 量子传感器
校准神经网络 利用神经网络处理训练数据中的不确定性, 实现接近量子极限的测量精度 [73] 参数估计 粒子群优化 自动设计干涉仪相位估计的反馈策略, 精度接近海森伯极限,
优于传统的BWB策略[74] 参数估计 强化学习 训练神经网络生成适用于不同参数值的控制序列,
避免每次参数更新时重新优化的高计算成本[76] 参数估计 深度强化学习 从几何角度推导了参数估计的 QFI 的无噪声和有噪声边界,
在无噪声和有噪声条件下均展现出良好的鲁棒性和样本效率[78] 参数估计 模型感知强化学习 结合贝叶斯估计和强化学习, 优化量子计量学中的实验设计,
适用于多种量子平台[79] 未知环境 深度学习 结合图神经网络和三角插值算法, 使光学量子传感器在
未知环境中达到海森伯极限精度[80] 微波探测 深度学习 提出不求解主方程即可有效探测多频率微波电场的方案, 硬件要求低, 精度高 [75] -
[1] Das Sarma S, Deng D L, Duan L M 2019 Phys. Today 72 48
[2] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91 045002
Google Scholar
[3] Wallnöfer J, Melnikov A A, Dür W, Briegel H J 2020 PRX Quantum 1 010301
Google Scholar
[4] Kaelbling L P, Littman M L, Moore A W 1996 J. Artif. Intell. Res. 4 237
Google Scholar
[5] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436
Google Scholar
[6] Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photonics 15 77
Google Scholar
[7] Jain A K, Mao J, Mohiuddin K M 1996 Computer 29 31
[8] Gers F A, Schmidhuber J, Cummins F 2000 Neural Comput. 12 2451
Google Scholar
[9] Cleveland W S, Devlin S J, Grosse E 1988 J. Econom. 37 87
Google Scholar
[10] Kotsiantis S B 2013 Artif. Intell. Rev. 39 261
Google Scholar
[11] Snoek J, Larochelle H, Adams R P 2012 Adv. Neural Inf. Process. Syst. 25
[12] Xu R, Wunsch D 2005 IEEE Trans. Neural Netw. 16 645
Google Scholar
[13] Raymer M L, Punch W F, Goodman E D, Kuhn L A, Jain A K 2000 IEEE Trans. Evol. Comput. 4 164
Google Scholar
[14] Dietterich T G 2000 Proceedings of the First International Workshop on Multiple Classifier Systems June 21—23, 2000 pp1–15
[15] Bennett C H, Brassard G 1984 Proceeding of the IEEE International Conference on Computers, Systems and Signal Processing 1984 pp175-179
[16] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
[17] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
Google Scholar
[18] Bennett C H 1992 Phys. Rev. Lett. 68 3121
Google Scholar
[19] Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501
Google Scholar
[20] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
Google Scholar
[21] Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400
Google Scholar
[22] Zeng P, Zhou H, Wu W, Ma X 2022 Nat. Commun. 13 3903
Google Scholar
[23] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z J, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum 3 020315
Google Scholar
[24] Ding H J, Liu J Y, Zhang C M, Wang Q 2020 Quantum Inf. Process. 19 1
Google Scholar
[25] Wang W, Lo H K 2019 Phys. Rev. A 100 062334
Google Scholar
[26] Lu F Y, Yin Z Q, Wang C, Cui C H, Teng J, Wang S, Chen W, Huang W, Xu B J, Guo G C, Han Z F 2019 J. Opt. Soc. Am. B 36 B92
Google Scholar
[27] Dong Q, Huang G, Cui W, Jiao R 2022 Quantum Inf. Process. 21 233
Google Scholar
[28] Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019 Phys. Rev. Appl. 12 014059
Google Scholar
[29] Zhang S W, Liu J K, Zhang C, Zhou X, Wang Q 2021 Entropy 23 1242
Google Scholar
[30] Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G G, Zhou X Y, Wang Q 2023 Sci. China Inf. Sci. 66 189402
Google Scholar
[31] Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501
Google Scholar
[32] Liu W Q, Huang P, Peng J Y, Fan J P, Zeng G H 2018 Phys. Rev. A 97 022316
Google Scholar
[33] Su Y, Guo Y, Huang D 2019 Entropy 21 908
Google Scholar
[34] Liao Q, Xiao G, Zhong H, Guo Y 2020 New J. Phys. 22 083086
Google Scholar
[35] Zhou M G, Liu Z P, Liu W B, Li C L, Bai J L, Xue Y R, Fu Y, Yin H L 2022 Sci. Rep. 12 8879
Google Scholar
[36] Liu Z P, Zhou M G, Liu W B, Li C L, Gu J, Yin H L, Chen Z B 2022 Opt. Express 30 15024
Google Scholar
[37] Mao Y Y, Huang W T, Zhong H, Wang Y J, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073
Google Scholar
[38] Ding C, Wang S, Wang Y N, Wu Z J, Sun J T, Mao Y Y 2023 Phys. Rev. A 107 062422
Google Scholar
[39] Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474
Google Scholar
[40] Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601
Google Scholar
[41] Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603
Google Scholar
[42] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100
Google Scholar
[43] Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 10
[44] Meng R R, Liu X, Jin M, Zhou Z Q, Li C H, Guo G C 2024 Chip 3 100081
Google Scholar
[45] Leung A, Tranter A, Paul K, Everett J, Gris P V, Higginbottom D Campbell G, Lam P K, Buchler B 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, 2018, pp1-2
[46] Cai M, Lu Y, Xiao M, Xia K 2021 Phys. Rev. A 104 053707
Google Scholar
[47] Khatri S 2021 Quantum 5 537
Google Scholar
[48] Reiß S D, Loock P 2023 Phys. Rev. A 108 012406
Google Scholar
[49] Robertson E, Esguerra L, Meßner L, Gallego G, Wolters J 2024 Phys. Rev. Appl. 22 024026
Google Scholar
[50] Lei Y, An H, Li Z, Hosseini M 2024 Phys. Rev. Research 6 033153
Google Scholar
[51] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288
Google Scholar
[52] Cao Y, Zhao Y, Li Jun, Lin J, Zhang Jie, Chen J 2019 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, CA, USA, 2019 pp. 1-3
[53] Cao Y, Zhao Y, Li Jun, Lin J, Zhang J, Chen J 2020 IEEE Trans. Netw. Serv. Manage. 17 946
Google Scholar
[54] Sharma P, Gupta S, Bhatia V, Prakash S 2023 IET Quantum Commun. 4 136
Google Scholar
[55] Kang J L, Zhang M H, Liu X P, He C 2024 Phys. Rev. A 109 022617
Google Scholar
[56] Thielking J, Okhapkin M V, Glowacki P, Meier D M, Wense L, Seiferle B, Düllmann C E, Thirolf P G, Peik E 2018 Nature 556 321
Google Scholar
[57] Farooq M, Chupp T, Grange J, Tewsley-Booth A, Flay D, Kawall D, Sachdeva N, Winter P 2020 Phys. Rev. Lett. 124 223001
Google Scholar
[58] Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M, Tino G M 2011 Phys. Rev. Lett. 106 038501.
Google Scholar
[59] Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C V 1997 Science 276 2012
Google Scholar
[60] Zhang H, Ma Y, Liao K, Yang W, Liu Z, Ding D, Yan H, Li W, Zhang L 2024 Sci. Bull. 69 1515
Google Scholar
[61] 郭弘, 吴腾, 罗斌 2024 物理 53 27
Google Scholar
Guo H, Wu T, Luo B 2024 Physics 53 27
Google Scholar
[62] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002
Google Scholar
[63] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005
Google Scholar
[64] Chen J P, Zhang C, Liu Y, Jiang C, Zhao D F, Zhang W J, Chen F X, Li H, You L X, Wang Z, Chen Y, Wang X B, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 128 180502
Google Scholar
[65] Xu Y, Wang T, Huang P, Zeng G H 2024 Research 7 0416
Google Scholar
[66] Liu S S, Tian Y, Zhang Y, Lu Z G, Wang X Y, Li Y M 2024 Optica 11 1762
Google Scholar
[67] Pirandola S, Bardhan B R, Gehring T, Weedbrook C, Lloyd S 2018 Nat. Photon. 12 724
Google Scholar
[68] Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photon. 6 1307
Google Scholar
[69] Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281
Google Scholar
[70] Zhao S R, Zhang Y Z, Liu W Z, Guan J Y, Zhang W, Li C L, Bai B, Li M H, Liu Y, You L, Zhang J, Fan J, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. X 11 031009
[71] Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Chridtandl M, Neergaard-Nielson J S, Andersen U L 2020 Nat. Photon. 16 281
[72] Liu L Z, Zhang Y Z, Li Z D, Zhang R, Yin X F, Fei Y Y, Li L, Liu N L, Xu F, Chen Y A, Pan J W 2021 Nat. Photon. 15 137
Google Scholar
[73] Cimini V, Gianani I, Spagnolo N, Leccese F, Sciarrino F, Barbieri M 2019 Phys. Rev. Lett. 123 230502
Google Scholar
[74] Hentschel A, Sanders B C 2010 Phys. Rev. Lett. 104 063603
Google Scholar
[75] Xu H, Li J, Liu L, Wang Y, Yuan H, Wang X 2019 npj Quantum Inf. 5 82
Google Scholar
[76] Schuff J, Fiderer L J, Braun D 2020 New J. Phys. 22 035001
Google Scholar
[77] Xiao T L, Fan J P, Zeng G H 2022 npj Quantum Inf. 8 2
Google Scholar
[78] Belliardo F, Zoratti F, Marquardt F, Giovannetti V 2024 Quantum 8 1555
Google Scholar
[79] Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Nat. Commun. 13 1997
Google Scholar
[80] Zhou Z, Du Y, Yin X F, Zhao S, Tian X, Tao D 2024 Phys. Rev. Res. 6 043267
Google Scholar
计量
- 文章访问数: 603
- PDF下载量: 23
- 被引次数: 0