搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能赋能量子通信与量子传感系统

徐佳歆 徐乐辰 刘靖阳 丁华建 王琴

引用本文:
Citation:

人工智能赋能量子通信与量子传感系统

徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴

Research progress of artificial intelligence empowered quantum communication and quantum sensing systems

XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子通信和量子传感分别利用量子系统的独特特性, 比如量子态的叠加性或量子纠缠特性等, 能够实现信息论安全的通信以及对物理量的高精度测量. 量子通信和量子传感, 作为当前最接近实用化的两种量子技术, 成为学术界的研究热点. 然而, 这两种技术在走向实用化的过程中也面临着诸多挑战, 例如: 设备缺陷导致现实安全性问题, 环境噪声干扰大导致测量精度降低等, 使得系统的大规模部署受到严重限制. 人工智能凭借其强大的算力和数据处理能力, 已经在通信、计算和成像等领域发挥着重要作用. 本文首先综述了人工智能与量子通信和量子传感交叉领域的发展现状, 包括人工智能在量子密钥分发、量子存储、量子网络、量子传感等方向的具体结合与应用, 为提升系统的可靠性、安全性、智能化与可扩展性等方面提供了强有力的保障. 接着分析了人工智能在赋能量子通信和量子传感系统中目前存在的问题, 最后对该领域未来的发展前景进行了展望和讨论.
    Quantum communication and quantum sensing, which leverage the unique characteristics of quantum systems, enable information-theoretically secure communication and high-precision measurement of physical quantities. They have attracted significant attention in recent research. However, they both face numerous challenges on the path to practical application. For instance, device imperfections may lead to security vulnerability, and environmental noise may significantly reduce measurement accuracy. Traditional solutions often involve high computational complexity, long processing time, and substantial hardware resource requirements, posing major obstacles to the large-scale deployment of quantum communication and quantum sensing networks. Artificial intelligence (AI), as a major technological advancement in current scientific landscape, offers powerful data processing and analytical capabilities, providing new ideas and methods for optimizing and enhancing quantum communication and sensing systems.Significant progresses have been made in applying AI to quantum communication and sensing, thus injecting new vitality into these cutting-edge technologies. In quantum communication, AI techniques have greatly improved the performance and security of quantum key distribution, quantum memory, and quantum networks through parameter optimization, real-time feedback control, and attack detection. In quantum sensing, quantum sensing technology enables ultra-high sensitivity detection of physical quantities such as time and magnetic fields. The introduction of AI has opened up new avenues for achieving high-precision and high-sensitivity quantum measurements. With AI, sensor performance is optimized, and measurement accuracy is further enhanced through data analysis.This paper also analyzes the current challenges in using AI to empower quantum communication and sensing systems, such as implementing efficient algorithm deployment and system feedback control under limited computational resources, and addressing complex task environments, dynamically changing scenarios, and multi-task coordination requirements. Finally, this paper discusses and envisions future development prospects in this field.
  • 图 1  人工智能概述

    Fig. 1.  An overview of artificial intelligence.

    图 2  强化学习示意图

    Fig. 2.  Schematic diagram of reinforcement learning.

    图 3  传统扫描传输程序与使用基于LSTM模型的QKD系统的误码率对比[28]

    Fig. 3.  Comparisons of QBER between applying traditional scanning-and transmitting program and using LSTM model for the same QKD system[28].

    图 4  基于支持向量回归的系统物理参数预测的基本思想[32]

    Fig. 4.  Basic idea of SVR to solve the physical parameters prediction problem[32].

    图 5  基于ANN的量子攻击检测模型[37] (a)一个没有隐藏层的线性人工神经网络模型, 只能解决线性可分问题; (b)一个带有隐藏层的非线性ANN模型, 用于对不同类型的量子攻击进行分类

    Fig. 5.  ANN-based quantum attack detection model [37]: (a) A linear ANN model without the hidden layer which can only solve linear separable problems; (b) a nonlinear ANN model with a hidden layer to classify different types of quantum attacks.

    图 6  基于机器学习的攻击检测方案的实现过程 [38]

    Fig. 6.  Implementation process of a machine-learning-based attack detection scheme [38].

    图 7  机器学习算法的详细流程示意图[46], 输入数据集(离散化的驱动场)不断地进行调整, 直到输出值和目标值之间的误差(强化学习算法中的反馈信号)降低到足够小的水平

    Fig. 7.  Detailed schematic of the ML algorithm [46], the input dataset (discrete control laser pulse) iteratively adjusts itself until the error (feedback in training) between the estimated output and the target value becomes small enough.

    图 8  量子密钥分发光网络中基于深度强化学习的路由与资源分配框架示意图[54]

    Fig. 8.  An illustration of the proposed deep reinforcement learning framework for the routing and resource assignment in quantum key distribution‐secured optical networks [54].

    图 9  即插即用双场量子接入网络与10 G-以太网无源光网络的全共存架构[55]

    Fig. 9.  Full coexistence architecture of plug-and-play twin-field QAN and 10 G-EPON [55].

    图 10  深度强化学习在量子传感协议中的应用示意图, I是智能体与环境的交互; II是基于状态感知的策略网络和价值网络, 采用LSTMCells57 [77]

    Fig. 10.  Illustration of DRL with (I) agent-environment interaction (II) state-aware policy and value networks with LSTMCells57 for quantum sensing protocols [77].

    图 11  基于深度学习的量子传感示意图[80]

    Fig. 11.  Schematic of deep-learning-based quantum sensing [80].

    表 1  人工智能在DV-QKD中的应用对比

    Table 1.  Comparison of artificial intelligence applications in DV-QKD.

    应用领域方法主要贡献参考文献
    参数优化随机森林预测MDI-QKD和BB84-QKD协议的最优参数[24]
    参数优化神经网络直接预测QKD系统最优参数[25]
    参数优化极端梯度提升
    预测TF-QKD的优化参数, 效率和准确性优于RF和BPNN[27]
    参数优化和系统校准反向传播神经网络预测系统最优参数, 同时实现了大规模MDI-QKD网络中的实时校准[26]
    相位校准长短记忆网络预测设备物理参数, 实时进行BB84-QKD系统的相位校准[28]
    相位校准长短记忆网络预测MDI-QKD系统中两个用户的相位漂移, 实时主动补偿[29]
    相位校准长短记忆网络预测TF-QKD系统相位漂移, 实现主动反馈控制[30]
    设备缺陷和攻击检测随机森林实时检测设备缺陷和攻击, 准确率高达98%[31]
    下载: 导出CSV

    表 2  人工智能在CV-QKD中的应用对比

    Table 2.  Comparison of artificial intelligence applications in CV-QKD.

    应用领域方法主要贡献参考文献
    参数优化支持向量回归预测系统物理参数, 优化QKD系统性能和安全性[32]
    参数优化反向传播神经网络调整调制方差, 确保系统安全, 有效地提高了密钥率[33]
    参数优化机器学习框架控制相位噪声, 优化调制方差, 实现100公里光纤通道上的密钥分发[39]
    密钥率预测多标签分类算法通过多标签分类算法区分相干态, 优于现有离散调制CV-QKD协议[34]
    密钥率预测神经网络快速预测离散调制CV-QKD协议的密钥率, 速度和准确性优于传统数值方法[35,36]
    攻击检测人工神经网络自动识别和分类攻击类型, 准确率和召回率超过99%[37]
    攻击检测密度聚类和多类支持向量机高效检测量子黑客攻击, 修正密钥率高估问题, 提供更紧致的安全边界[38]
    下载: 导出CSV

    表 3  人工智能在量子传感中的应用对比

    Table 3.  Comparison of artificial intelligence applications in quantum sensing.

    应用领域方法主要贡献参考文献
    量子传感器
    校准
    神经网络利用神经网络处理训练数据中的不确定性, 实现接近量子极限的测量精度[73]
    参数估计粒子群优化自动设计干涉仪相位估计的反馈策略, 精度接近海森伯极限,
    优于传统的BWB策略
    [74]
    参数估计强化学习训练神经网络生成适用于不同参数值的控制序列,
    避免每次参数更新时重新优化的高计算成本
    [76]
    参数估计深度强化学习从几何角度推导了参数估计的 QFI 的无噪声和有噪声边界,
    在无噪声和有噪声条件下均展现出良好的鲁棒性和样本效率
    [78]
    参数估计模型感知强化学习结合贝叶斯估计和强化学习, 优化量子计量学中的实验设计,
    适用于多种量子平台
    [79]
    未知环境深度学习结合图神经网络和三角插值算法, 使光学量子传感器在
    未知环境中达到海森伯极限精度
    [80]
    微波探测深度学习提出不求解主方程即可有效探测多频率微波电场的方案, 硬件要求低, 精度高[75]
    下载: 导出CSV
  • [1]

    Das Sarma S, Deng D L, Duan L M 2019 Phys. Today 72 48

    [2]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar

    [3]

    Wallnöfer J, Melnikov A A, Dür W, Briegel H J 2020 PRX Quantum 1 010301Google Scholar

    [4]

    Kaelbling L P, Littman M L, Moore A W 1996 J. Artif. Intell. Res. 4 237Google Scholar

    [5]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [6]

    Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photonics 15 77Google Scholar

    [7]

    Jain A K, Mao J, Mohiuddin K M 1996 Computer 29 31

    [8]

    Gers F A, Schmidhuber J, Cummins F 2000 Neural Comput. 12 2451Google Scholar

    [9]

    Cleveland W S, Devlin S J, Grosse E 1988 J. Econom. 37 87Google Scholar

    [10]

    Kotsiantis S B 2013 Artif. Intell. Rev. 39 261Google Scholar

    [11]

    Snoek J, Larochelle H, Adams R P 2012 Adv. Neural Inf. Process. Syst. 25

    [12]

    Xu R, Wunsch D 2005 IEEE Trans. Neural Netw. 16 645Google Scholar

    [13]

    Raymer M L, Punch W F, Goodman E D, Kuhn L A, Jain A K 2000 IEEE Trans. Evol. Comput. 4 164Google Scholar

    [14]

    Dietterich T G 2000 Proceedings of the First International Workshop on Multiple Classifier Systems June 21—23, 2000 pp1–15

    [15]

    Bennett C H, Brassard G 1984 Proceeding of the IEEE International Conference on Computers, Systems and Signal Processing 1984 pp175-179

    [16]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [17]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [18]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [19]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501Google Scholar

    [20]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [21]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [22]

    Zeng P, Zhou H, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [23]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z J, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [24]

    Ding H J, Liu J Y, Zhang C M, Wang Q 2020 Quantum Inf. Process. 19 1Google Scholar

    [25]

    Wang W, Lo H K 2019 Phys. Rev. A 100 062334Google Scholar

    [26]

    Lu F Y, Yin Z Q, Wang C, Cui C H, Teng J, Wang S, Chen W, Huang W, Xu B J, Guo G C, Han Z F 2019 J. Opt. Soc. Am. B 36 B92Google Scholar

    [27]

    Dong Q, Huang G, Cui W, Jiao R 2022 Quantum Inf. Process. 21 233Google Scholar

    [28]

    Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019 Phys. Rev. Appl. 12 014059Google Scholar

    [29]

    Zhang S W, Liu J K, Zhang C, Zhou X, Wang Q 2021 Entropy 23 1242Google Scholar

    [30]

    Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G G, Zhou X Y, Wang Q 2023 Sci. China Inf. Sci. 66 189402Google Scholar

    [31]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501Google Scholar

    [32]

    Liu W Q, Huang P, Peng J Y, Fan J P, Zeng G H 2018 Phys. Rev. A 97 022316Google Scholar

    [33]

    Su Y, Guo Y, Huang D 2019 Entropy 21 908Google Scholar

    [34]

    Liao Q, Xiao G, Zhong H, Guo Y 2020 New J. Phys. 22 083086Google Scholar

    [35]

    Zhou M G, Liu Z P, Liu W B, Li C L, Bai J L, Xue Y R, Fu Y, Yin H L 2022 Sci. Rep. 12 8879Google Scholar

    [36]

    Liu Z P, Zhou M G, Liu W B, Li C L, Gu J, Yin H L, Chen Z B 2022 Opt. Express 30 15024Google Scholar

    [37]

    Mao Y Y, Huang W T, Zhong H, Wang Y J, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073Google Scholar

    [38]

    Ding C, Wang S, Wang Y N, Wu Z J, Sun J T, Mao Y Y 2023 Phys. Rev. A 107 062422Google Scholar

    [39]

    Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [40]

    Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar

    [41]

    Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603Google Scholar

    [42]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar

    [43]

    Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 10

    [44]

    Meng R R, Liu X, Jin M, Zhou Z Q, Li C H, Guo G C 2024 Chip 3 100081Google Scholar

    [45]

    Leung A, Tranter A, Paul K, Everett J, Gris P V, Higginbottom D Campbell G, Lam P K, Buchler B 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, 2018, pp1-2

    [46]

    Cai M, Lu Y, Xiao M, Xia K 2021 Phys. Rev. A 104 053707Google Scholar

    [47]

    Khatri S 2021 Quantum 5 537Google Scholar

    [48]

    Reiß S D, Loock P 2023 Phys. Rev. A 108 012406Google Scholar

    [49]

    Robertson E, Esguerra L, Meßner L, Gallego G, Wolters J 2024 Phys. Rev. Appl. 22 024026Google Scholar

    [50]

    Lei Y, An H, Li Z, Hosseini M 2024 Phys. Rev. Research 6 033153Google Scholar

    [51]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar

    [52]

    Cao Y, Zhao Y, Li Jun, Lin J, Zhang Jie, Chen J 2019 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, CA, USA, 2019 pp. 1-3

    [53]

    Cao Y, Zhao Y, Li Jun, Lin J, Zhang J, Chen J 2020 IEEE Trans. Netw. Serv. Manage. 17 946Google Scholar

    [54]

    Sharma P, Gupta S, Bhatia V, Prakash S 2023 IET Quantum Commun. 4 136Google Scholar

    [55]

    Kang J L, Zhang M H, Liu X P, He C 2024 Phys. Rev. A 109 022617Google Scholar

    [56]

    Thielking J, Okhapkin M V, Glowacki P, Meier D M, Wense L, Seiferle B, Düllmann C E, Thirolf P G, Peik E 2018 Nature 556 321Google Scholar

    [57]

    Farooq M, Chupp T, Grange J, Tewsley-Booth A, Flay D, Kawall D, Sachdeva N, Winter P 2020 Phys. Rev. Lett. 124 223001Google Scholar

    [58]

    Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M, Tino G M 2011 Phys. Rev. Lett. 106 038501.Google Scholar

    [59]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C V 1997 Science 276 2012Google Scholar

    [60]

    Zhang H, Ma Y, Liao K, Yang W, Liu Z, Ding D, Yan H, Li W, Zhang L 2024 Sci. Bull. 69 1515Google Scholar

    [61]

    郭弘, 吴腾, 罗斌 2024 物理 53 27Google Scholar

    Guo H, Wu T, Luo B 2024 Physics 53 27Google Scholar

    [62]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [63]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [64]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhao D F, Zhang W J, Chen F X, Li H, You L X, Wang Z, Chen Y, Wang X B, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 128 180502Google Scholar

    [65]

    Xu Y, Wang T, Huang P, Zeng G H 2024 Research 7 0416Google Scholar

    [66]

    Liu S S, Tian Y, Zhang Y, Lu Z G, Wang X Y, Li Y M 2024 Optica 11 1762Google Scholar

    [67]

    Pirandola S, Bardhan B R, Gehring T, Weedbrook C, Lloyd S 2018 Nat. Photon. 12 724Google Scholar

    [68]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photon. 6 1307Google Scholar

    [69]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [70]

    Zhao S R, Zhang Y Z, Liu W Z, Guan J Y, Zhang W, Li C L, Bai B, Li M H, Liu Y, You L, Zhang J, Fan J, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. X 11 031009

    [71]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Chridtandl M, Neergaard-Nielson J S, Andersen U L 2020 Nat. Photon. 16 281

    [72]

    Liu L Z, Zhang Y Z, Li Z D, Zhang R, Yin X F, Fei Y Y, Li L, Liu N L, Xu F, Chen Y A, Pan J W 2021 Nat. Photon. 15 137Google Scholar

    [73]

    Cimini V, Gianani I, Spagnolo N, Leccese F, Sciarrino F, Barbieri M 2019 Phys. Rev. Lett. 123 230502Google Scholar

    [74]

    Hentschel A, Sanders B C 2010 Phys. Rev. Lett. 104 063603Google Scholar

    [75]

    Xu H, Li J, Liu L, Wang Y, Yuan H, Wang X 2019 npj Quantum Inf. 5 82Google Scholar

    [76]

    Schuff J, Fiderer L J, Braun D 2020 New J. Phys. 22 035001Google Scholar

    [77]

    Xiao T L, Fan J P, Zeng G H 2022 npj Quantum Inf. 8 2Google Scholar

    [78]

    Belliardo F, Zoratti F, Marquardt F, Giovannetti V 2024 Quantum 8 1555Google Scholar

    [79]

    Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Nat. Commun. 13 1997Google Scholar

    [80]

    Zhou Z, Du Y, Yin X F, Zhao S, Tian X, Tao D 2024 Phys. Rev. Res. 6 043267Google Scholar

  • [1] 刘刚钦. 高压下的色心磁共振和量子传感. 物理学报, doi: 10.7498/aps.74.20250224
    [2] 李庆, 季云兰, 刘然, SuterDieter, 江敏, 彭新华. 基于强相互作用核自旋系统的量子传感. 物理学报, doi: 10.7498/aps.74.20250271
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [4] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, doi: 10.7498/aps.72.20221582
    [5] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, doi: 10.7498/aps.72.20230208
    [6] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, doi: 10.7498/aps.71.20221125
    [7] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, doi: 10.7498/aps.71.20211146
    [8] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, doi: 10.7498/aps.71.20210907
    [9] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, doi: 10.7498/aps.71.20212072
    [10] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [11] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [12] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [13] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, doi: 10.7498/aps.67.20180755
    [14] 李熙涵. 量子直接通信. 物理学报, doi: 10.7498/aps.64.160307
    [15] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, doi: 10.7498/aps.63.130301
    [16] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, doi: 10.7498/aps.61.030303
    [17] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, doi: 10.7498/aps.61.154206
    [18] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, doi: 10.7498/aps.60.060308
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  603
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-12
  • 修回日期:  2025-04-11
  • 上网日期:  2025-04-19

/

返回文章
返回