搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子直接通信

李熙涵

引用本文:
Citation:

量子直接通信

李熙涵

Quantum secure direct communication

Li Xi-Han
PDF
导出引用
  • 量子直接通信是量子通信中的一个重要分支, 它是一种不需要事先建立密钥而直接传输机密信息的新型通信模式. 本综述将介绍量子直接通信的基本原理, 回顾量子直接通信的发展历程, 从最早的高效量子直接通信协议、两步量子直接通信模型、量子一次一密直接通信模型等, 到抗噪声的量子直接通信模型以及基于单光子多自由度量子态及超纠缠态的量子直接通信模型, 最后介绍量子直接通信的研究现状并展望其发展未来.
    Quantum secure direct communication (QSDC) is one of the most important branches of quantum communication. In contrast to the quantum key distribution (QKD) which distributes a secure key between distant parties, QSDC directly transmits secret message instead of sharing key in advance. To establish a secure QSDC protocol, on the one hand, the security of the quantum channel should be confirmed before the exchange of the secret message. On the other hand, the quantum state should be transmitted in a quantum data block since the security of QSDC is based on the error rate analysis in the theories on statistics. Compared with the deterministic quantum key distribution (DQKD) which can also be used to transmit deterministic information, QSDC schemes do not need extra classical bits to read the secret message except for public discussion. In this article, we introduce the basic principles of QSDC and review the development in this field by introducing typical QSDC protocols chronologically. The first QSDC protocol was proposed by Long and Liu, which can be used to establish a common key between distant parties. In their scheme, the method for transmitting quantum states in a block by block way and in multiple steps was proposed and the information leakage before eavesdropping detection was solved. Subsequently, Deng et al. presented two pioneering QSDC schemes, an entangled-state-based two-step QSDC scheme and a single-photon-state-based quantum one-time pad scheme, in which the basic principle and criteria for QSDC were pointed out. From then on, many interesting QSDC schemes have been proposed, including the high-dimension QSDC scheme based on quantum superdense coding, multi-step QSDC scheme based on Greenberger-Horne-Zeilinger states, QSDC scheme based on quantum encryption with practical non-maximally entangled quantum channel, and so on. We also introduce the anti-noise QSDC schemes which were designed for coping with the collective-dephasing noise and the collective-rotation noise, respectively. In 2011, Wang et al. presented the first QSDC which exploited the hyperentangled state as the information carrier and several QSDC schemes based on the spatial degree of freedom (DOF) of photon, single-photon multi-DOF state and hyperentanglement were proposed subsequently. In addition to the point-to-point QSDC schemes, we also review the QSDC networks. Finally, a perspective of QSDC research is given in the last section.
    • 基金项目: 国家自然科学基金(批准号: 11004258)和中央高校基本科研业务费(批准号: CQDXWL-2012-014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004258) and the Fundamental Research Funds for the Central Universities, China (Grant No. CQDXWL-2012-014).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Bangalore: IEEE) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [4]

    Deng F G, Long G L 2003 Phys. Rev. A 68 042315

    [5]

    Deng F G, Long G L 2004 Phys. Rev. A 70 012311

    [6]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. A 78 022321

    [7]

    Beige A, Englert B G, Kurtsiefer C, Weinfurter H 2002 Acta Phys. Pol. A 101 357

    [8]

    Yan F L, Zhang X 2004 Eur. Phys. J. B 41 75

    [9]

    Gao T, Fan F L, Wang Z X 2005 J. Phys. A 38 5761

    [10]

    Man Z X, Zhang Z J, Li Y 2005 Chin. Phys. Lett. 22 18

    [11]

    Man Z X, Zhang Z J, Li Y 2005 Chin. Phys. Lett. 22 22

    [12]

    Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73 022338

    [13]

    Lee H, Lim J, Yang H 2006 Phys. Rev. A 73 042305

    [14]

    Wang J, Zhang Q, Tang C J 2006 Int. J. Quantum Inf. 4 925

    [15]

    Wang J, Zhang Q, Tang C J 2006 Int. J. Mod. Phys. C 17 685

    [16]

    Wang H F, Zhang S, Yeon K H, Um C I 2006 J. Korean Phys. Soc. 49 459

    [17]

    Chang Y, Zhang S B, Yan L L, Li J 2014 Chin. Sci. Bull. 59 2835

    [18]

    Li X H, Deng F G, Li C Y, Liang Y J, Zhou P, Zhou H Y 2006 J. Korean Phys. Soc. 49 1354

    [19]

    Gao G, Fang M, Yang R M 2011 Int. J. Theor. Phys. 50 882

    [20]

    Wu Y H, Zhai W D, Cao W Z, Li C 2011 Int. J. Theor. Phys. 50 325

    [21]

    Zhang Q N, Li C C, Li Y H, Nie Y Y 2013 Int. J. Theor. Phys. 52 22

    [22]

    Chang Y, Xu C X, Zhang S B, Yan L L 2013 Chin. Sci. Bull. 58 4571

    [23]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese) [权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493]

    [24]

    Tsai C W, Hwang T 2013 Sci. China Phys. Mech. Astron. 56 1903

    [25]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [26]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [27]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307

    [28]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A 39 14089

    [29]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [30]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [31]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [32]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [33]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [34]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149

    [35]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [36]

    Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China Phys. Mech. Astron. 54 942

    [37]

    Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305

    [38]

    Gu B, Huang Y G, Fang X, Zhang C Y 2011 Chin. Phys. B 20 100309

    [39]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831

    [40]

    Liu D, Chen J L, Jiang W 2012 Int. J. Theor. Phys. 51 2923

    [41]

    Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946

    [42]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2013 Eur. Phys. J. D 67 30

    [43]

    Gu B, Huang Y G, Fang X, Chen Y L 2013 Int. J. Theor. Phys. 52 4461

    [44]

    Banerjee A, Pathak A 2012 Phys. Lett. A 376 2944

    [45]

    Pirandola S, Braunstein S L, Mancini S, Lloyd S 2008 Eur. Phys. Lett. 84 20013

    [46]

    Meslouhi A, Hassouni Y 2013 Quantum Inf. Process. 12 2603

    [47]

    Zheng C, Long G F 2014 Sci. China Phys. Mech. Astron. 57 1238

    [48]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [49]

    Karlsson A, Bourennane M 1998 Phys. Rev. A 58 4394

    [50]

    Li X H, Ghose S 2015 Phys. Rev. A 91 012320

    [51]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [52]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304

    [53]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G 2006 Chin. Phys. Lett. 23 1080

    [54]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [55]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Phys. Scr. 76 25

    [56]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 3553

    [57]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [58]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 113 190501

    [59]

    Lu X, Wang W, Ma J 2013 IEEE Trans. Smart Grid 4 170

    [60]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理, 力学, 天文学 41 332]

    [61]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 24 3]

    [62]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [63]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901

    [64]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 277

    [65]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501

    [66]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301

    [67]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601

    [68]

    Long G L, Deng F G, Wang C, Li X H 2007 Front. Phys. China 2 251

    [69]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [70]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [71]

    Li C Y, Li X H, Deng F G, Zhou P, Liang Y J, Zhou H Y 2006 Chin. Phys. Lett. 23 2896

    [72]

    Cerè A, Lucamarini M, Giuseppe G D, Tombesi P 2006 Phys. Rev. Lett. 96 200501

    [73]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T 2015 arXiv:1503.00451

    [74]

    Deng F G, Long G L 2006 Commun. Theor. Phys. 46 443

    [75]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302

    [76]

    Wen K, Long G L 2005 Phys. Rev. A 72 022336

    [77]

    Wen K, Long G L 2010 Int. J. Quantum Inf. 8 697

    [78]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [79]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169

    [80]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [81]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [82]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [83]

    Li X H, Deng F G, Zhou H Y 2007 Appl. Phys. Lett. 91 144101

    [84]

    Deng F G, Li X H, Zhou H Y Li X H, Duan X J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065503

    [85]

    Li X H, Zeng Z, Wang C 2014 J. Opt. Soc. Am. B 31 2334

    [86]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [87]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [88]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [89]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [90]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [91]

    Li X H, Ghose S 2014 Laser Phys. Lett. 11 125201

    [92]

    Li X H, Ghose S 2015 Opt. Express 23 3550

    [93]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [94]

    Pan J W, Simon C, Brukner C, Zellinger A 2001 Nature 410 1067

    [95]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [96]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 042308

    [97]

    98 Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [98]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [99]

    Li X H 2010 Phys. Rev. A 82 044304

    [100]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [101]

    Deng F G 2011 Phys. Rev. A 83 062316

    [102]

    Yoon C S, Kang M S, Lim J I, Yang H J 2015 Phys. Scr. 90 015103

    [103]

    Shi G F, Xi X Q, Hu M L, Yue R H 2010 Opt. Commun. 283 1984

    [104]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [105]

    Fatahi N, Naseri M 2012 Int. J. Theor. Phys. 51 2094

    [106]

    Huang W, Wen Q Y, Liu B, Su Q, Qin S J, Gao F 2014 Phys. Rev. A 89 032325

  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Bangalore: IEEE) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [4]

    Deng F G, Long G L 2003 Phys. Rev. A 68 042315

    [5]

    Deng F G, Long G L 2004 Phys. Rev. A 70 012311

    [6]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. A 78 022321

    [7]

    Beige A, Englert B G, Kurtsiefer C, Weinfurter H 2002 Acta Phys. Pol. A 101 357

    [8]

    Yan F L, Zhang X 2004 Eur. Phys. J. B 41 75

    [9]

    Gao T, Fan F L, Wang Z X 2005 J. Phys. A 38 5761

    [10]

    Man Z X, Zhang Z J, Li Y 2005 Chin. Phys. Lett. 22 18

    [11]

    Man Z X, Zhang Z J, Li Y 2005 Chin. Phys. Lett. 22 22

    [12]

    Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73 022338

    [13]

    Lee H, Lim J, Yang H 2006 Phys. Rev. A 73 042305

    [14]

    Wang J, Zhang Q, Tang C J 2006 Int. J. Quantum Inf. 4 925

    [15]

    Wang J, Zhang Q, Tang C J 2006 Int. J. Mod. Phys. C 17 685

    [16]

    Wang H F, Zhang S, Yeon K H, Um C I 2006 J. Korean Phys. Soc. 49 459

    [17]

    Chang Y, Zhang S B, Yan L L, Li J 2014 Chin. Sci. Bull. 59 2835

    [18]

    Li X H, Deng F G, Li C Y, Liang Y J, Zhou P, Zhou H Y 2006 J. Korean Phys. Soc. 49 1354

    [19]

    Gao G, Fang M, Yang R M 2011 Int. J. Theor. Phys. 50 882

    [20]

    Wu Y H, Zhai W D, Cao W Z, Li C 2011 Int. J. Theor. Phys. 50 325

    [21]

    Zhang Q N, Li C C, Li Y H, Nie Y Y 2013 Int. J. Theor. Phys. 52 22

    [22]

    Chang Y, Xu C X, Zhang S B, Yan L L 2013 Chin. Sci. Bull. 58 4571

    [23]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese) [权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493]

    [24]

    Tsai C W, Hwang T 2013 Sci. China Phys. Mech. Astron. 56 1903

    [25]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [26]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [27]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307

    [28]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A 39 14089

    [29]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [30]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [31]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [32]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [33]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [34]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149

    [35]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [36]

    Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China Phys. Mech. Astron. 54 942

    [37]

    Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305

    [38]

    Gu B, Huang Y G, Fang X, Zhang C Y 2011 Chin. Phys. B 20 100309

    [39]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831

    [40]

    Liu D, Chen J L, Jiang W 2012 Int. J. Theor. Phys. 51 2923

    [41]

    Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946

    [42]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2013 Eur. Phys. J. D 67 30

    [43]

    Gu B, Huang Y G, Fang X, Chen Y L 2013 Int. J. Theor. Phys. 52 4461

    [44]

    Banerjee A, Pathak A 2012 Phys. Lett. A 376 2944

    [45]

    Pirandola S, Braunstein S L, Mancini S, Lloyd S 2008 Eur. Phys. Lett. 84 20013

    [46]

    Meslouhi A, Hassouni Y 2013 Quantum Inf. Process. 12 2603

    [47]

    Zheng C, Long G F 2014 Sci. China Phys. Mech. Astron. 57 1238

    [48]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [49]

    Karlsson A, Bourennane M 1998 Phys. Rev. A 58 4394

    [50]

    Li X H, Ghose S 2015 Phys. Rev. A 91 012320

    [51]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [52]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304

    [53]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G 2006 Chin. Phys. Lett. 23 1080

    [54]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [55]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Phys. Scr. 76 25

    [56]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 3553

    [57]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [58]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 113 190501

    [59]

    Lu X, Wang W, Ma J 2013 IEEE Trans. Smart Grid 4 170

    [60]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理, 力学, 天文学 41 332]

    [61]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 24 3]

    [62]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [63]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901

    [64]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 277

    [65]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501

    [66]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301

    [67]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601

    [68]

    Long G L, Deng F G, Wang C, Li X H 2007 Front. Phys. China 2 251

    [69]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [70]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [71]

    Li C Y, Li X H, Deng F G, Zhou P, Liang Y J, Zhou H Y 2006 Chin. Phys. Lett. 23 2896

    [72]

    Cerè A, Lucamarini M, Giuseppe G D, Tombesi P 2006 Phys. Rev. Lett. 96 200501

    [73]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T 2015 arXiv:1503.00451

    [74]

    Deng F G, Long G L 2006 Commun. Theor. Phys. 46 443

    [75]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302

    [76]

    Wen K, Long G L 2005 Phys. Rev. A 72 022336

    [77]

    Wen K, Long G L 2010 Int. J. Quantum Inf. 8 697

    [78]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [79]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169

    [80]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [81]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [82]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [83]

    Li X H, Deng F G, Zhou H Y 2007 Appl. Phys. Lett. 91 144101

    [84]

    Deng F G, Li X H, Zhou H Y Li X H, Duan X J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065503

    [85]

    Li X H, Zeng Z, Wang C 2014 J. Opt. Soc. Am. B 31 2334

    [86]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [87]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [88]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [89]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [90]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [91]

    Li X H, Ghose S 2014 Laser Phys. Lett. 11 125201

    [92]

    Li X H, Ghose S 2015 Opt. Express 23 3550

    [93]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [94]

    Pan J W, Simon C, Brukner C, Zellinger A 2001 Nature 410 1067

    [95]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [96]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 042308

    [97]

    98 Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [98]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [99]

    Li X H 2010 Phys. Rev. A 82 044304

    [100]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [101]

    Deng F G 2011 Phys. Rev. A 83 062316

    [102]

    Yoon C S, Kang M S, Lim J I, Yang H J 2015 Phys. Scr. 90 015103

    [103]

    Shi G F, Xi X Q, Hu M L, Yue R H 2010 Opt. Commun. 283 1984

    [104]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [105]

    Fatahi N, Naseri M 2012 Int. J. Theor. Phys. 51 2094

    [106]

    Huang W, Wen Q Y, Liu B, Su Q, Qin S J, Gao F 2014 Phys. Rev. A 89 032325

  • [1] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [5] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [7] 聂敏, 刘广腾, 杨光, 裴昌幸. 基于最少中继节点约束的量子VoIP路由优化策略. 物理学报, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [8] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析. 物理学报, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [9] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真. 物理学报, 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [12] 张琳, 聂敏, 刘晓慧. 有噪量子信道生存函数研究及其仿真. 物理学报, 2013, 62(15): 150301. doi: 10.7498/aps.62.150301
    [13] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略. 物理学报, 2013, 62(20): 200304. doi: 10.7498/aps.62.200304
    [14] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案. 物理学报, 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [15] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [18] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  12699
  • PDF下载量:  994
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-06-09
  • 刊出日期:  2015-08-05

/

返回文章
返回