-
量子通信基于量子力学基本原理实现信息的安全传输。光子是量子通信中重要的信息载体。基于光子的量子通信协议需要在通信双方传输光子,但传输过程中由于环境噪声的存在不可避免地会发生光子传输损耗。光子传输损耗极大降低了长距离量子通信的通信效率,甚至威胁通信安全,成为实现长距离量子通信的主要障碍。量子无噪声线性放大(noiselesslinear amplification,NLA)是抵御光子传输损耗的重要方法,它通过局域操作和后选择,可有效提高输出态中目标态的保真度或平均光子数,且完美保留目标态的编码信息。因此,在量子通信中使用NLA技术可有效克服光子传输损耗,延长通信距离,对于实现远距离量子通信具有重要意义。近年来,研究人员提出了许多NLA方案,并完成了部分方案的实验演示,证明了NLA的可行性。本文重点介绍在离散变量和连续变量量子系统中针对不同量子态的NLA方案,并总结了几个具有代表性的NLA实验,最后,对NLA技术进行总结和展望。本综述可为未来长距离量子通信网络的实用化发展提供理论支持。Quantum communication can realize secure information transmission based on the fundamental principles of quantum mechanics. Photon is a crucial information carrier in quantum communication. The photonic quantum communication protocols require the transmission of photons or photonic entanglement between communicating parties. However, during this process, photon transmission loss inevitably occurs due to environmental noise. Photon transmission loss significantly reduces the efficiency of quantum communication and even threatens its security, so that it becomes a major obstacle for practical long-distance quantum communication. Quantum noiseless linear amplification (NLA) is a promising method for mitigating photon transmission loss. Through local operations and post-selection, NLA can effectively increase the fidelity of the target state or the average photon number in the output state while perfectly preserve the encoded information of the target state. As a result, employing NLA technology can effectively overcome photon transmission loss and extend the secure communication distance.
In this paper, we categorize existing NLA protocols into two classes: the NLA protocols in DV quantum systems and CV quantum systems. In DV quantum systems, we provide a detailed introduction of the quantum scissor (QS)-based NLA protocols for single photons, single-photon polarization qubits, and single-photon spatial entanglement. The QS-based NLA can effectively increase the fidelity of the target states while perfectly preserve its encodings. In recent years, researchers have researched on various improvement on QS-based NLA protocols. In CV quantum systems, researchers adopted parallel multiple QSs structure, generalized QS to increase the average photon number of the Fock state, coherent states and two-mode squeezed vacuum state. Beyond theoretical progress, experimental implementations of NLA have also made significant progresses. We summarize representative experimental demonstrations of QS-based NLA protocols.
In the concluding section, we provide perspectives on future development directions for NLA to facilitate its practical applications. This review can provide theoretical support for the practical development of NLA in the future.-
Keywords:
- Quantum communication /
- Quantum noise-free linear amplification /
- Continuous variables /
- Discrete variables
-
[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[3] Duan L M, Lukin M, Cirac I, Zoller P 2001 Nature 414 413
[4] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502
[5] Briegel H J, Browne D E, Dür W, Raussendorf R, Nest M V den 2009 Nat. Phys. 5 19
[6] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787
[7] Goswami S, Dhara S 2023 Phys. Rev. Appl. 20 024048
[8] Ralph T C, Lund A P 2009 AIP Conference Proceedings 1110 155
[9] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N, Thew R T 2012 Phys. Rev. A 86 023815
[10] Xiang G Y, Ralph T C, Lund A P, Walk N, Pryde G J 2010 Nat. Photon. 4 316
[11] Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501
[12] Curty M, Moroder T 2011 Phys. Rev. A 84 010304
[13] Pitkanen D, Ma X, Wickert R, Van Loock P, Lütkenhaus N 2011 Phys. Rev. A 84 022325
[14] Zhang S, Yang S, Zou X, Shi B, Guo G 2012 Phys. Rev. A 86 034302
[15] Monteiro F, Verbanis E, Vivoli V C, Martin A, Gisin N, Zbinden H, Thew R T 2017 Quantum Sci. Technol. 2 024008
[16] Meyer-Scott E, Bula M, Bartkiewicz K, Černoch A, Soubusta J, Jennewein T, Lemr K 2013 Phys. Rev. A 88 012327
[17] Yang S, Zhang S, Zou X, Bi S, Lin X 2013 Phys. Rev. A 87 024302
[18] Kocsis S, Xiang G Y, Ralph T C, Pryde G J 2013 Nat. Phys. 9 23
[19] Zhou L, Sheng Y B 2013 J. Opt. Soc. Am. B 30 2737
[20] Zhou L, Sheng Y B 2015 Laser Phys. Lett. 12 045203
[21] Ou-Yang Y, Feng Z F, Zhou L, Sheng Y B 2015 Laser Phys. 26 015204
[22] Zhou L, Chen L Q, Zhong W, Sheng Y B 2018 Laser Phys. Lett. 15 015201
[23] Wang D D, Jin Y Y, Qin S X, Zu H, Zhou L, Zhong W, Sheng Y B 2018 Quantum Inf. Process. 17 56
[24] Yang G, Zhang Y S, Yang Z R, Zhou L, Sheng Y B 2019 Quantum Inf. Process. 18 317
[25] Li Y P, Zhang J, Xu B W, Zhou L, Zhong W, Sheng Y B 2020 Quantum Inf. Process. 19 261
[26] Xu B W, Zhang J, Zhou L, Zhong W, Sheng Y B 2021 Quantum Inf. Process. 20 163
[27] Feng Y P, Gu J Q, Zhou L, Zhong W, Du M M, Li X Y, Sheng Y B 2024 Quantum Inf. Process. 23 201
[28] Seshadreesan K P, Krovi H, Guha S 2019 Phys. Rev. A 100 022315
[29] Winnel M S, Hosseinidehaj N, Ralph T C 2020 Phys. Rev. A 102 063715
[30] He M, Malaney R, Burnett B A 2021 Phys. Rev. A 103 012414
[31] Zhong W, Li Y P, Sheng Y B, Zhou L 2022 EPL 140 18003
[32] Guanzon J J, Winnel M S, Lund A P, Ralph T C 2022 Phys. Rev. Lett. 128 160501
[33] Zhu Y, Zhu W, Zhong W, Du M, Sheng Y, Zhou L 2023 Chin. Sci. Bull. 68 2411
[34] Zavatta A, Fiurášek J, Bellini M 2010 Nat. Photon. 5 52
[35] Chrzanowski H M, Walk N, Assad S M, Janousek J, Hosseini S, Ralph T C, Symul T, Lam P K 2014 Nat. Photon. 8 333
[36] Ulanov A E, Fedorov I A, Pushkina A A, Kurochkin Y V, Ralph T C, Lvovsky A I 2015 Nat. Photon. 9 764
[37] Fiurášek J 2024 Opt. Express 32 2527
[38] Xin J 2024 Opt. Express 32 48541
[39] Notarnicola M N, Olivares S 2023 Phys. Rev. A 108 022404
[40] Acín A, Gisin N, Masanes L 2006 Phys. Rev. Lett. 97 120405
[41] Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501
[42] Pironio S, Acin A, Brunner N, Gisin N, Massar S, Scarani V 2009 New J. Phys. 11 045021
[43] Lee H W, Kim J 2000 Phys. Rev. A 63 012305
[44] Hessmo B, Usachev P, Heydari H, Björk G 2004 Phys. Rev. Lett. 92 180401
[45] Halenková E, Černoch A, Lemr K, Soubusta J, Drusová S 2012 Appl. Opt., AO 51 474
[46] Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R, Grangier P 2010 Phys. Rev. Lett. 104 123603
[47] Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556
[48] Fiurášek J 2022 Phys. Rev. A 105 062425
计量
- 文章访问数: 192
- PDF下载量: 2
- 被引次数: 0