搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子无噪声线性放大

崔诗荷 杜明明 李喜云 周澜 盛宇波

引用本文:
Citation:

量子无噪声线性放大

崔诗荷, 杜明明, 李喜云, 周澜, 盛宇波

Quantum non-deterministic noiseless linear amplification

CUI Shihe, DU Mingming, LI Xiyun, ZHOU Lan, SHENG Yubo
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子通信基于量子力学基本原理实现信息的安全传输。光子是量子通信中重要的信息载体。基于光子的量子通信协议需要在通信双方传输光子,但传输过程中由于环境噪声的存在不可避免地会发生光子传输损耗。光子传输损耗极大降低了长距离量子通信的通信效率,甚至威胁通信安全,成为实现长距离量子通信的主要障碍。量子无噪声线性放大(noiselesslinear amplification,NLA)是抵御光子传输损耗的重要方法,它通过局域操作和后选择,可有效提高输出态中目标态的保真度或平均光子数,且完美保留目标态的编码信息。因此,在量子通信中使用NLA技术可有效克服光子传输损耗,延长通信距离,对于实现远距离量子通信具有重要意义。近年来,研究人员提出了许多NLA方案,并完成了部分方案的实验演示,证明了NLA的可行性。本文重点介绍在离散变量和连续变量量子系统中针对不同量子态的NLA方案,并总结了几个具有代表性的NLA实验,最后,对NLA技术进行总结和展望。本综述可为未来长距离量子通信网络的实用化发展提供理论支持。
    Quantum communication can realize secure information transmission based on the fundamental principles of quantum mechanics. Photon is a crucial information carrier in quantum communication. The photonic quantum communication protocols require the transmission of photons or photonic entanglement between communicating parties. However, during this process, photon transmission loss inevitably occurs due to environmental noise. Photon transmission loss significantly reduces the efficiency of quantum communication and even threatens its security, so that it becomes a major obstacle for practical long-distance quantum communication. Quantum noiseless linear amplification (NLA) is a promising method for mitigating photon transmission loss. Through local operations and post-selection, NLA can effectively increase the fidelity of the target state or the average photon number in the output state while perfectly preserve the encoded information of the target state. As a result, employing NLA technology can effectively overcome photon transmission loss and extend the secure communication distance.
    In this paper, we categorize existing NLA protocols into two classes: the NLA protocols in DV quantum systems and CV quantum systems. In DV quantum systems, we provide a detailed introduction of the quantum scissor (QS)-based NLA protocols for single photons, single-photon polarization qubits, and single-photon spatial entanglement. The QS-based NLA can effectively increase the fidelity of the target states while perfectly preserve its encodings. In recent years, researchers have researched on various improvement on QS-based NLA protocols. In CV quantum systems, researchers adopted parallel multiple QSs structure, generalized QS to increase the average photon number of the Fock state, coherent states and two-mode squeezed vacuum state. Beyond theoretical progress, experimental implementations of NLA have also made significant progresses. We summarize representative experimental demonstrations of QS-based NLA protocols.
    In the concluding section, we provide perspectives on future development directions for NLA to facilitate its practical applications. This review can provide theoretical support for the practical development of NLA in the future.
  • [1]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [2]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [3]

    Duan L M, Lukin M, Cirac I, Zoller P 2001 Nature 414 413

    [4]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502

    [5]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Nest M V den 2009 Nat. Phys. 5 19

    [6]

    Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787

    [7]

    Goswami S, Dhara S 2023 Phys. Rev. Appl. 20 024048

    [8]

    Ralph T C, Lund A P 2009 AIP Conference Proceedings 1110 155

    [9]

    Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N, Thew R T 2012 Phys. Rev. A 86 023815

    [10]

    Xiang G Y, Ralph T C, Lund A P, Walk N, Pryde G J 2010 Nat. Photon. 4 316

    [11]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501

    [12]

    Curty M, Moroder T 2011 Phys. Rev. A 84 010304

    [13]

    Pitkanen D, Ma X, Wickert R, Van Loock P, Lütkenhaus N 2011 Phys. Rev. A 84 022325

    [14]

    Zhang S, Yang S, Zou X, Shi B, Guo G 2012 Phys. Rev. A 86 034302

    [15]

    Monteiro F, Verbanis E, Vivoli V C, Martin A, Gisin N, Zbinden H, Thew R T 2017 Quantum Sci. Technol. 2 024008

    [16]

    Meyer-Scott E, Bula M, Bartkiewicz K, Černoch A, Soubusta J, Jennewein T, Lemr K 2013 Phys. Rev. A 88 012327

    [17]

    Yang S, Zhang S, Zou X, Bi S, Lin X 2013 Phys. Rev. A 87 024302

    [18]

    Kocsis S, Xiang G Y, Ralph T C, Pryde G J 2013 Nat. Phys. 9 23

    [19]

    Zhou L, Sheng Y B 2013 J. Opt. Soc. Am. B 30 2737

    [20]

    Zhou L, Sheng Y B 2015 Laser Phys. Lett. 12 045203

    [21]

    Ou-Yang Y, Feng Z F, Zhou L, Sheng Y B 2015 Laser Phys. 26 015204

    [22]

    Zhou L, Chen L Q, Zhong W, Sheng Y B 2018 Laser Phys. Lett. 15 015201

    [23]

    Wang D D, Jin Y Y, Qin S X, Zu H, Zhou L, Zhong W, Sheng Y B 2018 Quantum Inf. Process. 17 56

    [24]

    Yang G, Zhang Y S, Yang Z R, Zhou L, Sheng Y B 2019 Quantum Inf. Process. 18 317

    [25]

    Li Y P, Zhang J, Xu B W, Zhou L, Zhong W, Sheng Y B 2020 Quantum Inf. Process. 19 261

    [26]

    Xu B W, Zhang J, Zhou L, Zhong W, Sheng Y B 2021 Quantum Inf. Process. 20 163

    [27]

    Feng Y P, Gu J Q, Zhou L, Zhong W, Du M M, Li X Y, Sheng Y B 2024 Quantum Inf. Process. 23 201

    [28]

    Seshadreesan K P, Krovi H, Guha S 2019 Phys. Rev. A 100 022315

    [29]

    Winnel M S, Hosseinidehaj N, Ralph T C 2020 Phys. Rev. A 102 063715

    [30]

    He M, Malaney R, Burnett B A 2021 Phys. Rev. A 103 012414

    [31]

    Zhong W, Li Y P, Sheng Y B, Zhou L 2022 EPL 140 18003

    [32]

    Guanzon J J, Winnel M S, Lund A P, Ralph T C 2022 Phys. Rev. Lett. 128 160501

    [33]

    Zhu Y, Zhu W, Zhong W, Du M, Sheng Y, Zhou L 2023 Chin. Sci. Bull. 68 2411

    [34]

    Zavatta A, Fiurášek J, Bellini M 2010 Nat. Photon. 5 52

    [35]

    Chrzanowski H M, Walk N, Assad S M, Janousek J, Hosseini S, Ralph T C, Symul T, Lam P K 2014 Nat. Photon. 8 333

    [36]

    Ulanov A E, Fedorov I A, Pushkina A A, Kurochkin Y V, Ralph T C, Lvovsky A I 2015 Nat. Photon. 9 764

    [37]

    Fiurášek J 2024 Opt. Express 32 2527

    [38]

    Xin J 2024 Opt. Express 32 48541

    [39]

    Notarnicola M N, Olivares S 2023 Phys. Rev. A 108 022404

    [40]

    Acín A, Gisin N, Masanes L 2006 Phys. Rev. Lett. 97 120405

    [41]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501

    [42]

    Pironio S, Acin A, Brunner N, Gisin N, Massar S, Scarani V 2009 New J. Phys. 11 045021

    [43]

    Lee H W, Kim J 2000 Phys. Rev. A 63 012305

    [44]

    Hessmo B, Usachev P, Heydari H, Björk G 2004 Phys. Rev. Lett. 92 180401

    [45]

    Halenková E, Černoch A, Lemr K, Soubusta J, Drusová S 2012 Appl. Opt., AO 51 474

    [46]

    Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R, Grangier P 2010 Phys. Rev. Lett. 104 123603

    [47]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556

    [48]

    Fiurášek J 2022 Phys. Rev. A 105 062425

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统. 物理学报, doi: 10.7498/aps.74.20250322
    [2] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享. 物理学报, doi: 10.7498/aps.74.20250227
    [3] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, doi: 10.7498/aps.73.20230138
    [4] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, doi: 10.7498/aps.73.20241094
    [5] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.72.20221902
    [6] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [7] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, doi: 10.7498/aps.71.20221072
    [8] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20220635
    [9] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, doi: 10.7498/aps.71.20212341
    [10] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, doi: 10.7498/aps.70.20202073
    [11] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.69.20191689
    [12] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, doi: 10.7498/aps.68.20181911
    [13] 李熙涵. 量子直接通信. 物理学报, doi: 10.7498/aps.64.160307
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, doi: 10.7498/aps.62.070301
    [15] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, doi: 10.7498/aps.61.014206
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, doi: 10.7498/aps.61.154206
    [17] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, doi: 10.7498/aps.58.2184
    [19] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, doi: 10.7498/aps.56.5066
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, doi: 10.7498/aps.56.5
计量
  • 文章访问数:  192
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回