搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案

吴晓东 黄端 黄鹏 郭迎

引用本文:
Citation:

基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案

吴晓东, 黄端, 黄鹏, 郭迎

Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation

Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying
PDF
HTML
导出引用
  • 由于离散调制连续变量测量设备无关量子密钥分发方案与高效纠错码具有良好的兼容性, 因此即使在低信噪比条件下, 也具备较高的协商效率, 并且其实现条件相比于高斯调制方案更加简单. 然而, 实验中常用的零差探测器的量子效率仅为0.6, 这会严重影响离散调制连续变量测量设备无关量子密钥分发方案的实际应用性能. 鉴于此, 本文提出基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案, 即在该方案中对两条量子信道的输出端各采用一个相位敏感放大器用于补偿相对应的实际零差探测器. 仿真结果表明采用相位敏感放大器能够很好地补偿实际零差探测器的量子效率, 有效提升基于实际探测器的离散调制连续变量测量设备无关量子密钥分发方案的密钥率和安全传输距离, 为推动离散调制连续变量测量设备无关量子密钥分发方案的实用化发展提供了一个有效而实用的方法.
    Discrete modulation continuous variable measurement device independent quantum key distribution scheme has good compatibility with efficient error correction codes, which leads to high reconciliation efficiency even at low signal-to-noise ratio. Besides, the implementation of this protocol is simpler than that of Gaussian modulation scheme. However, the quantum efficiency of homodyne detector commonly used in the experiment is only 0.6, which will seriously affect the practical application performance of discrete modulation continuous variable measurement device independent quantum key distribution scheme. To solve this problem, we propose a discrete modulation continuous variable measurement device independent quantum key distribution scheme based on realistic detector compensation. In our scheme, for the outputs of two quantum channels, each adopts a phase sensitive amplifier to compensate for the corresponding realistic homodyne detector. The simulation results show that the phase sensitive amplifier can well compensate for the quantum efficiency of the realistic detector and effectively improve the performance of the discrete modulation continuous variable measurement device independent quantum key distribution scheme with realistic detector in terms of secret key rate and secure transmission distance. The proposed protocol provides an effective method for promoting the practical development of the discrete modulation continuous variable measurement device independent quantum key distribution scheme.
      通信作者: 黄端, duanhuang@csu.edu.cn ; 黄鹏, huang.peng@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871407, 61872390, 61801522)和福建工程学院科研启动基金(批准号: GY-Z22042)资助的课题.
      Corresponding author: Huang Duan, duanhuang@csu.edu.cn ; Huang Peng, huang.peng@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61872390, 61801522) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).
    [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [3]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar

    [6]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [7]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [8]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [9]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [10]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin 70 020301Google Scholar

    [11]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [12]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [13]

    Wang T, Zuo Z, Li L, Huang P, Guo Y, Zeng G 2022 Phys. Rev. Appl. 18 014064Google Scholar

    [14]

    Liu C, Zhu C, Nie M, Yang H, Pei C 2022 Opt. Express 30 14798Google Scholar

    [15]

    Jing F, Liu X, Wang X, Lu Y, Wu T, Li K, Dong C 2022 Opt. Express 30 8075Google Scholar

    [16]

    Sarmiento S, Etcheverry S, Aldama J, López I H, Vidarte L T, Xavier G B, Nolan D A, Stone J S, Li M J, Loeber D, Pruneri V 2022 New J. Phys. 24 063011Google Scholar

    [17]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [18]

    Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar

    [19]

    Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar

    [20]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [21]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [22]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [23]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [24]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [25]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [26]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [27]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [28]

    Filip R 2008 Phys. Rev. A 77 022310Google Scholar

    [29]

    Yuan Z L, Dynes J F, Shields A J 2010 Nat. Photonics 4 800Google Scholar

    [30]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [31]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [32]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [33]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [34]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [35]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [36]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [37]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

    [38]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [39]

    Lupo C, Ottaviani C, Papanastasiou P, Pirandola S 2018 Phys. Rev. Lett. 120 220505Google Scholar

    [40]

    Ferreira da S T, Vitoreti D, Xavier G B, do Amaral G C, Temporao G P, von derWeid J P 2013 Phys. Rev. A 88 052303Google Scholar

    [41]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [42]

    Xu F, Qi B, Liao Z, Lo H K 2013 Appl. Phys. Lett. 103 061101Google Scholar

    [43]

    Li Z, Zhang Y C, Xu F, Peng X, Guo H 2014 Phys. Rev. A 89 052301Google Scholar

    [44]

    Ma X C, Sun S H, Jiang M S, Gui M, Liang L M 2014 Phys. Rev. A 89 042335Google Scholar

    [45]

    Zhang Y C, Li Z, Yu S, Gu W, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar

    [46]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [47]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar

    [48]

    Richardson T J, Shokrollahi M A, Urbanke R 2001 IEEE Trans. Inf. Theory 47 619Google Scholar

    [49]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325Google Scholar

    [50]

    Jouguet P, Kunz-Jacques S, Leverrier A 2011 Phys. Rev. A 84 062317Google Scholar

    [51]

    Milicevic M, Chen F, Zhang L M, Gulak P. G 2018 npj Quantum Inf. 4 21Google Scholar

    [52]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

    [53]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [54]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [55]

    Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar

    [56]

    Pirandola S 2013 New J. Phys. 15 113046Google Scholar

    [57]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B 42 114014Google Scholar

    [58]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • 图 1  基于实际探测器的离散调制CV-MDI-QKD方案图, $D(\delta )$表示置换操作

    Fig. 1.  Schematic diagram of the discrete modulation CV-MDI-QKD based on realistic detector, $D(\delta )$ represents displacement operation.

    图 2  $W$(${W_4}$${W_{{\text{EPR}}}}$)与调制方差${V_{\text{M}}}$的关系

    Fig. 2.  Relationship between $W$(${W_4}$ and ${W_{{\text{EPR}}}}$) and the modulation variance ${V_{\text{M}}}$.

    图 3  基于PSA的离散调制CV-MDI-QKD实际探测器补偿方案图, PSA为相位敏感放大器

    Fig. 3.  Schematic diagram of discrete modulation CV-MDI-QKD with realistic detector compensation based on PSA, where PSA is the phase-sensitive amplifier.

    图 4  在对称情况以及不同的PSA增益参数$G$下所提出方案的安全密钥率与传输距离的关系

    Fig. 4.  Relationship between the security key rate and transmission distance of the proposed scheme in the symmetric case with different PSA gain $G$.

    图 5  极端非对称情况下所提出方案的安全密钥率与PSA增益参数$G$及传输距离${L_{AC}}$的关系

    Fig. 5.  Relationship between the secret key rate and the PSA gain$G$, transmission distance ${L_{AC}}$ of the proposed scheme in the extreme asymmetric case.

    图 6  极端非对称情况以及不同的PSA增益参数$G$下所提出方案的安全密钥率与传输距离的关系

    Fig. 6.  Relationship between the secret key rate and the transmission distance of the proposed scheme in the extreme asymmetric case with different PSA gain G.

    图 7  极端非对称情况以及不同PSA增益参数$G$下所提出方案的安全密钥率与协商效率$\beta $的关系

    Fig. 7.  Relationship between the secret key rate and the reconciliation efficiency $\beta $ of the proposed scheme in the extreme asymmetric case with different PSA gain $G$.

  • [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [3]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar

    [6]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [7]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [8]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [9]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [10]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin 70 020301Google Scholar

    [11]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [12]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [13]

    Wang T, Zuo Z, Li L, Huang P, Guo Y, Zeng G 2022 Phys. Rev. Appl. 18 014064Google Scholar

    [14]

    Liu C, Zhu C, Nie M, Yang H, Pei C 2022 Opt. Express 30 14798Google Scholar

    [15]

    Jing F, Liu X, Wang X, Lu Y, Wu T, Li K, Dong C 2022 Opt. Express 30 8075Google Scholar

    [16]

    Sarmiento S, Etcheverry S, Aldama J, López I H, Vidarte L T, Xavier G B, Nolan D A, Stone J S, Li M J, Loeber D, Pruneri V 2022 New J. Phys. 24 063011Google Scholar

    [17]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [18]

    Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar

    [19]

    Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar

    [20]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [21]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [22]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [23]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [24]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [25]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [26]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [27]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [28]

    Filip R 2008 Phys. Rev. A 77 022310Google Scholar

    [29]

    Yuan Z L, Dynes J F, Shields A J 2010 Nat. Photonics 4 800Google Scholar

    [30]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [31]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [32]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [33]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [34]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [35]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [36]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [37]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

    [38]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [39]

    Lupo C, Ottaviani C, Papanastasiou P, Pirandola S 2018 Phys. Rev. Lett. 120 220505Google Scholar

    [40]

    Ferreira da S T, Vitoreti D, Xavier G B, do Amaral G C, Temporao G P, von derWeid J P 2013 Phys. Rev. A 88 052303Google Scholar

    [41]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [42]

    Xu F, Qi B, Liao Z, Lo H K 2013 Appl. Phys. Lett. 103 061101Google Scholar

    [43]

    Li Z, Zhang Y C, Xu F, Peng X, Guo H 2014 Phys. Rev. A 89 052301Google Scholar

    [44]

    Ma X C, Sun S H, Jiang M S, Gui M, Liang L M 2014 Phys. Rev. A 89 042335Google Scholar

    [45]

    Zhang Y C, Li Z, Yu S, Gu W, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar

    [46]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [47]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar

    [48]

    Richardson T J, Shokrollahi M A, Urbanke R 2001 IEEE Trans. Inf. Theory 47 619Google Scholar

    [49]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325Google Scholar

    [50]

    Jouguet P, Kunz-Jacques S, Leverrier A 2011 Phys. Rev. A 84 062317Google Scholar

    [51]

    Milicevic M, Chen F, Zhang L M, Gulak P. G 2018 npj Quantum Inf. 4 21Google Scholar

    [52]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

    [53]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [54]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [55]

    Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar

    [56]

    Pirandola S 2013 New J. Phys. 15 113046Google Scholar

    [57]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B 42 114014Google Scholar

    [58]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • [1] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [2] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [4] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [5] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [6] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [7] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [8] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [9] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响. 物理学报, 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [10] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [11] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [12] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [13] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [15] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 邓文武, 郑 俊, 谭华堂, 李高翔. 非简并四波混频体系中双模光场的纠缠特性. 物理学报, 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
计量
  • 文章访问数:  3925
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-08-11
  • 上网日期:  2022-12-14
  • 刊出日期:  2022-12-24

/

返回文章
返回