搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件同步的四态离散调制连续变量量子密钥分发

张云杰 王旭阳 张瑜 王宁 贾雁翔 史玉琪 卢振国 邹俊 李永民

引用本文:
Citation:

基于硬件同步的四态离散调制连续变量量子密钥分发

张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民

Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization

Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min
PDF
HTML
导出引用
  • 在连续变量量子密钥分发系统中, 同步技术是确保通信双方时钟和数据一致的关键技术. 本文通过巧妙设计发送端和接收端仪器的硬件时序, 采用时域差拍探测方式和峰值采集技术, 实验实现了可硬件同步的四态离散调制连续变量量子密钥分发. 通信双方在设计好的硬件同步时序下可实现时钟的恢复和数据的自动对齐, 无需借助软件算法实现数据的对齐. 本文采用了加拿大滑铁卢大学 Norbert Lütkenhaus研究组提出的针对连续变量离散调制协议的安全密钥速率计算方法. 该方法需计算出接收端所测各种平移热态的一阶矩和二阶(非中心)矩, 以此为约束条件结合凸优化算法可计算出安全密钥速率. 计算过程中无需假设信道为线性信道, 无需额外噪声的估算. 密钥分发系统重复频率为10 MHz, 传输距离为25 km, 平均安全密钥比特率为24 kbit/s. 本文提出的硬件同步方法无需过采样和软件帧同步, 减小了系统的复杂度和计算量, 在一定程度上降低了系统所需的成本、功耗和体积, 有效地增强了连续变量量子密钥分发的实用性.
    In the case of continuous-variable quantum key distribution (CV-QKD) systems, synchronization is a key technology that ensures that both the transmitter and receiver obtain corresponding data synchronously. By designing an ingenious time sequence for the transmitter and receiver and using the peaking value acquisition technique and time domain heterodyne detection, we experimentally realize a four-state discrete modulation CV-QKD with a repetition rate of 10 MHz, transmitting over a distance of 25 km. With well-designed time sequence of hardware, Alice and Bob can obtain corresponding data automatically without using numerous software calculation methods.The secure key rates are calculated by using the method proposed by the Lütkenhaus group at the University of Waterloo in Canada. In the calculation, we first estimate the first and the second moment by using the measured quadratures of displaced thermal states, followed by calculating the secret key rate by using the convex optimization method through the reconstruction of the moments. There is no need to assume a linear quantum transmission channel to estimate the excess noise. Finally, secure key rates of 0.0022—0.0091 bit/pulse are achieved, and the excess noise is between 0.016 and 0.103.In this study, first, we introduce the prepare-and-measure scheme and the entanglement-based scheme of the four-state discrete modulation protocol. The Wigner images of the four coherent states on Alice’s side, and four displaced thermal states on Bob’s side are presented. Second, the design of hardware synchronization time series is introduced comprehensively. Third, the CV-QKD experiment setup is introduced and the time sequence is verified. Finally, the calculation method of secure key rate using the first and the second moment of quadrature is explained in detail. The phase space distribution of quadratures is also presented. The secret key rate ranges between 0.0022 and 0.0091 bits/pulse, and the equivalent excess noise are between 0.016 and 0.103. The average secret key bit rate is 24 kbit/s. During the experiment, the first and the second moment of the quantum state at the receiver end are found to fluctuate owing to the finite-size effect. This effect reduces the value of the secure key rate and limits the transmission distance of the CV-QKD system.In conclusion, four-state discrete modulation CV-QKD based on hardware synchronization is designed and demonstrated. The proposed hardware synchronization method can effectively reduce the cost, size, and power consumption. In the future, the finite-size effect will be investigated theoretically and experimentally to improve the performance of system.
      通信作者: 王旭阳, wangxuyang@sxu.edu.cn ; 李永民, yongmin@sxu.edu.cn
    • 基金项目: 山西省应用基础研究计划(批准号: 202103021224010)、山西省省筹资金资助回国留学人员科研项目(批准号: 2022-016)、国家自然科学基金(批准号: 62175138, 62205188, 11904219)、量子光学与光量子器件国家重点实验室开放课题(批准号: KF202006)和山西“1331 工程”重点项目资助课题.
      Corresponding author: Wang Xu-Yang, wangxuyang@sxu.edu.cn ; Li Yong-Min, yongmin@sxu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021224010), the Shanxi Provincial Foundation for Returned Scholars, China (Grant No. 2022-016), the National Natural Science Foundation of China (Grant Nos. 62175138, 62205188, 11904219), the Open Fund of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202006), and the “1331Project” for Key Subject Construction of Shanxi Province, China.
    [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Fan-Yuan G J, Lu F L, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [4]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [5]

    Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [6]

    Xu H, Hu X L, Jiang C, Yu Z W, Wang X B 2023 Phys. Rev. Res. 5 023069Google Scholar

    [7]

    Jiang C, Yu Z W, Hu X L, Wang X B 2023 Natl. Sci. Rev. 10 186Google Scholar

    [8]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang Y, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [9]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Zhang W, Li L, Li M J, Chen H A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [10]

    Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M, Dai Y Q, Tang S B, Li H, You L X, Wang Z, Chen Y A, Ma X F, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X, Wei K J 2023 Chip 2 100039Google Scholar

    [12]

    Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030Google Scholar

    [13]

    Huang P, Wang T, Huang D, Zeng G H 2022 Symmetry 14 568Google Scholar

    [14]

    Wang H, Pan Y, Shao Y, Pi Y D, Ye T, Li Y, Zhang T, Liu J L, Yang J, Ma L, Huang W, Xu B J 2023 Opt. Express 31 5577Google Scholar

    [15]

    Sun S H, Xu F H 2021 New J. Phys. 23 023011Google Scholar

    [16]

    Sun S H 2021 Phys. Rev. A 104 022423Google Scholar

    [17]

    Huang P, Huang J Z, Zhang Z S, Zeng G H 2018 Phys. Rev. A 97 042311Google Scholar

    [18]

    Zhang Y C, Li Z Y, Yu S, Gu W Y, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar

    [19]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [20]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [21]

    Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett. 48 2953Google Scholar

    [22]

    Wang T, Xu Y, Zhao H, Li L, Huang P, Zeng G H 2023 Opt. Lett. 48 719Google Scholar

    [23]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [24]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [25]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar

    [26]

    Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han F Z 2022 Nat. Photonics 16 154Google Scholar

    [27]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [28]

    Pan Y, Wang H, Shao Y, Pi Y D, Liu B, Huang W, Xu B J 2022 Opt. Lett. 47 3307Google Scholar

    [29]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang Tao, Huang W, Xu B J 2022 Commun. Phys. 5 162Google Scholar

    [30]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2023 arXiv: 2305.19642v1[quant-ph]

    [31]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [32]

    Zhang G, Haw J Y, Cai H, Xu F H, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [33]

    Wang X Y, Jia Y X, Guo X B, Liu J Q, Wang S F, Liu W Y, Sun F Y, Zou J, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar

    [34]

    Jia Y X, Wang X Y, Hu X, Hua X, Zhang Y, Guo X B, Zhang S X, Xiao X, Yu S H, Zou J, Li Y M 2023 New J. Phys. 25 103030Google Scholar

    [35]

    Li L, Wang T, Li X H, Huang P, Guo Y Y, Lu L J, Zhou L J, Zeng G H 2023 Photonics Res. 11 504Google Scholar

    [36]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [37]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [38]

    Lin J, Upadhyaya T, Lutkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [39]

    Ghorai S, Grangier P, Diamanti E, Leverrier A 2019 Phys. Rev. X 9 021059Google Scholar

    [40]

    Lupo C, Ouyang Y K 2022 PRX Quantum 3 010341Google Scholar

    [41]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

    [42]

    Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 040334Google Scholar

    [43]

    Wang X Y, Bai Z L, Wang S F, Li Y M, Peng K C 2013 Chin. Phys. Lett. 30 010305Google Scholar

    [44]

    Pereira D, Almeida M, Facao M F, Pinto A N, Silva N A 2022 Opt. Lett. 47 3948Google Scholar

    [45]

    Kleis S, Rueckmann M, Schaeffe C G 2017 Opt. Lett. 42 1588Google Scholar

    [46]

    Milovancev D, Vokic N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [47]

    Li H S, Wang C, Huang P, Huang D, Wang T, Zeng G H 2016 Opt. Express 24 20481Google Scholar

    [48]

    Wang C, Huang P, Huang D, Lin D K, Zeng G H 2016 Phys. Rev. A 93 022315Google Scholar

    [49]

    刘友明, 汪超, 黄端, 黄鹏, 冯晓毅, 彭进业, 曹正文, 曾贵华 2015 光学学报 35 0106006Google Scholar

    Liu Y M, Wang C, Huang D, Huang P, Feng X Y, Peng J Y, Cao Z W, Zeng G H 2015 Acta Opt. Sin. 35 0106006Google Scholar

    [50]

    Lin J, Lütkenhaus N 2020 Phys. Rev. Appl. 14 064030Google Scholar

    [51]

    Lodewyck J, Bloch M, Garcia-Patron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [52]

    Wang X Y, Liu J Q, Li X F, Li Y M 2015 IEEE J. Quantum Electron. 51 5200206Google Scholar

    [53]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [54]

    Du S N, Li Z Y, Liu W Y, Wang X Y, Li Y M 2018 J. Opt. Soc. Am. B 35 481Google Scholar

    [55]

    Wang X Y, Guo X B, Jia Y X, Zhang Y, Lu Z G, Liu J Q, Li Y M 2023 J. Lightwave Technol. 41 5518Google Scholar

    [56]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [57]

    刘建强, 王旭阳, 白增亮, 李永民 2016 物理学报 65 100303Google Scholar

    Liu J Q, Wang X Y, Bai Z L, Li Y M 2016 Acta Phys. Sin. 65 100303Google Scholar

  • 图 1  发送端和接收端的量子态在相空间中的Wigner函数图形 (a) 发送端Alice制备的四个相干态的Wigner函数图形和其俯视图; (b) 接收端Bob接收到的四个平移热态的Wigner函数图形和其俯视图

    Fig. 1.  Wigner pictures of the quantum states of Alice and Bob: (a) The Wigner pictures of four coherent states prepared by Alice and their top view; (b) the Wigner functions of four displaced thermal states received by Bob and their top view.

    图 2  CV-QKD系统的电信号时序图 (a) 发送端Alice的电信号时序图; (b) 接收端Bob的电信号时序图

    Fig. 2.  Timing diagrams of the CV-QKD system: (a) The timing diagram of Alice; (b) the timing diagram of Bob.

    图 3  基于硬件同步方案的四态离散调制CV-QKD系统光路图. AM, 振幅调制器; PM, 相位调制器; PG, 脉冲发生器; AWG, 任意波形发生器; PD, 光电探测器; PMF, 保偏光纤; PBC, 偏振合束器; PBS, 偏振合束器; DPC, 动态偏振控制器; VOA, 可调光衰减器; THD, 时域差拍探测器; TBHD, 时域平衡零拍探测器; FS, 光纤交换机

    Fig. 3.  Scheme of the four-state discrete modulation CV-QKD system based on the hardware synchronization method. AM, amplitude modulator; PM, phase modulator; PG, pulse generator; AWG, arbitrary waveform generator; PD, photodetector; PMF, polarization maintaining fiber; PBC, polarization beam combiner; PBS, polarization beam splitter; DPC, dynamic polarization controller; VOA, variable optical attenuator; THD, time domain heterodyne detector; TBHD, time domain balanced homodyne detector; FS, fiber switch.

    图 4  发送端Alice的各种信号波形 (a) AWG.CH1输出的时钟信号波形; (b) 图(a)的展开波形; (c) AWG.CH2-4输出的一个数据块的调制信号波形; (d) PG1.CH1-2输出的脉冲信号波形

    Fig. 4.  Various waveform at Alice’s side: (a) The waveform of clock signals generated by AWG.CH1; (b) the expanded waveform of panel (a); (c) the waveform of one block modulated signals generated by AWG.CH2-4; (d) the waveform of pulse signals generated by PG1.CH1-2.

    图 5  接收端Bob的各种信号波形 (a) PD2输出的恢复时钟信号波形; (b) PG 2.CH1输出的时钟信号波形; (c) THD输出的散粒噪声色温图; (d) THD输出的平移热态的色温图

    Fig. 5.  Various waveform at Bob’s side: (a) The waveform of recovery clock signals generated by PD2; (b) the waveform of clock signals generated by PG2.CH1; (c) the color temperature waveform of the shot noise generated by THD; (d) the color temperature waveform of the displaced thermal states generated by THD.

    图 6  各平移热态正交分量的一阶矩和二阶矩的测量值 (a) 平移热态$ \rho _0^{{\text{th}}} $测量值; (b) 平移热态$ \rho _1^{{\text{th}}} $测量值; (c) 平移热态$ \rho _2^{{\text{th}}} $测量值; (d) 平移热态$ \rho _3^{{\text{th}}} $测量值

    Fig. 6.  Measurement results of the first and second moments of quadratures of the displaced thermal states: (a) Measurement results of displaced thermal state $ \rho _0^{{\text{th}}} $; (b) measurement results of displaced thermal state $ \rho _1^{{\text{th}}} $; (c) measurement results of displaced thermal state $ \rho _2^{{\text{th}}} $; (d) measurement results of displaced thermal state $ \rho _{3}^{{\text{th}}} $.

    图 7  安全密钥速率和正交分量值的相空间分布图 (a) 每帧数据的安全密钥速率; (b) 平移热态正交分量值的相空间分布图

    Fig. 7.  Secure key rates and the phase space distribution of quadratures: (a) The secret key rate of each frame; (b) the phase space distribution of quadratures of displaced thermal states.

    表 1  正交分量一阶矩和二阶矩的相关统计量

    Table 1.  Statistical quantities of the first and second moments of quadratures.

    $ \langle {{{\hat X}_0}} \rangle $$ \langle {{{\hat X}^2}_0} \rangle $$ \langle {{{\hat Y}_0}} \rangle $$ \langle {{{\hat Y}^2}_0} \rangle $$ \langle {{{\hat X}_1}} \rangle $$ \langle {{{\hat X}^2}_1} \rangle $$ \langle {{{\hat Y}_1}} \rangle $$ \langle {{{\hat Y}^2}_1} \rangle $
    最大值0.4941.370.0171.120.0371.110.4921.34
    最小值0.4381.29–0.0351.07–0.0211.070.4211.27
    均值0.4671.32–0.0121.090.0121.090.4701.31
    方差2.35×10–44.09×10–42.37×10–48.69×10–51.58×10–47.22×10–52.81×10–43.98×10–4
    期望值0.4701.31–9.09×10–51.08–2.44×10–41.080.47101.30
    $ \langle {{{\hat X}_2}} \rangle $$ \langle {{{\hat X}^2}_2} \rangle $$ \langle {{{\hat Y}_2}} \rangle $$ \langle {{{\hat Y}^2}_2} \rangle $$ \langle {{{\hat X}_3}} \rangle $$ \langle {{{\hat X}^2}_3} \rangle $$ \langle {{{\hat Y}_3}} \rangle $$ \langle {{{\hat Y}^2}_3} \rangle $
    最大值–0.4441.380.0241.110.0341.11–0.4251.34
    最小值–0.5141.28–0.0471.07–0.0181.08–0.4781.26
    均值–0.4771.33–0.0021.09–0.0071.10–0.4581.30
    方差3.86×10–46.51×10–44.74×10–41.01×10–41.07×10–49.70×10–51.90×10–43.90×10–4
    期望值–0.4691.31–1.56×10–41.08–3.11×10–41.09–0.4721.30
    下载: 导出CSV
  • [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Fan-Yuan G J, Lu F L, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [4]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [5]

    Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [6]

    Xu H, Hu X L, Jiang C, Yu Z W, Wang X B 2023 Phys. Rev. Res. 5 023069Google Scholar

    [7]

    Jiang C, Yu Z W, Hu X L, Wang X B 2023 Natl. Sci. Rev. 10 186Google Scholar

    [8]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang Y, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [9]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Zhang W, Li L, Li M J, Chen H A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [10]

    Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M, Dai Y Q, Tang S B, Li H, You L X, Wang Z, Chen Y A, Ma X F, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X, Wei K J 2023 Chip 2 100039Google Scholar

    [12]

    Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030Google Scholar

    [13]

    Huang P, Wang T, Huang D, Zeng G H 2022 Symmetry 14 568Google Scholar

    [14]

    Wang H, Pan Y, Shao Y, Pi Y D, Ye T, Li Y, Zhang T, Liu J L, Yang J, Ma L, Huang W, Xu B J 2023 Opt. Express 31 5577Google Scholar

    [15]

    Sun S H, Xu F H 2021 New J. Phys. 23 023011Google Scholar

    [16]

    Sun S H 2021 Phys. Rev. A 104 022423Google Scholar

    [17]

    Huang P, Huang J Z, Zhang Z S, Zeng G H 2018 Phys. Rev. A 97 042311Google Scholar

    [18]

    Zhang Y C, Li Z Y, Yu S, Gu W Y, Peng X, Guo H 2014 Phys. Rev. A 90 052325Google Scholar

    [19]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [20]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [21]

    Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett. 48 2953Google Scholar

    [22]

    Wang T, Xu Y, Zhao H, Li L, Huang P, Zeng G H 2023 Opt. Lett. 48 719Google Scholar

    [23]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [24]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [25]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570Google Scholar

    [26]

    Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han F Z 2022 Nat. Photonics 16 154Google Scholar

    [27]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [28]

    Pan Y, Wang H, Shao Y, Pi Y D, Liu B, Huang W, Xu B J 2022 Opt. Lett. 47 3307Google Scholar

    [29]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang Tao, Huang W, Xu B J 2022 Commun. Phys. 5 162Google Scholar

    [30]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2023 arXiv: 2305.19642v1[quant-ph]

    [31]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [32]

    Zhang G, Haw J Y, Cai H, Xu F H, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [33]

    Wang X Y, Jia Y X, Guo X B, Liu J Q, Wang S F, Liu W Y, Sun F Y, Zou J, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar

    [34]

    Jia Y X, Wang X Y, Hu X, Hua X, Zhang Y, Guo X B, Zhang S X, Xiao X, Yu S H, Zou J, Li Y M 2023 New J. Phys. 25 103030Google Scholar

    [35]

    Li L, Wang T, Li X H, Huang P, Guo Y Y, Lu L J, Zhou L J, Zeng G H 2023 Photonics Res. 11 504Google Scholar

    [36]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [37]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [38]

    Lin J, Upadhyaya T, Lutkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [39]

    Ghorai S, Grangier P, Diamanti E, Leverrier A 2019 Phys. Rev. X 9 021059Google Scholar

    [40]

    Lupo C, Ouyang Y K 2022 PRX Quantum 3 010341Google Scholar

    [41]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

    [42]

    Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 040334Google Scholar

    [43]

    Wang X Y, Bai Z L, Wang S F, Li Y M, Peng K C 2013 Chin. Phys. Lett. 30 010305Google Scholar

    [44]

    Pereira D, Almeida M, Facao M F, Pinto A N, Silva N A 2022 Opt. Lett. 47 3948Google Scholar

    [45]

    Kleis S, Rueckmann M, Schaeffe C G 2017 Opt. Lett. 42 1588Google Scholar

    [46]

    Milovancev D, Vokic N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [47]

    Li H S, Wang C, Huang P, Huang D, Wang T, Zeng G H 2016 Opt. Express 24 20481Google Scholar

    [48]

    Wang C, Huang P, Huang D, Lin D K, Zeng G H 2016 Phys. Rev. A 93 022315Google Scholar

    [49]

    刘友明, 汪超, 黄端, 黄鹏, 冯晓毅, 彭进业, 曹正文, 曾贵华 2015 光学学报 35 0106006Google Scholar

    Liu Y M, Wang C, Huang D, Huang P, Feng X Y, Peng J Y, Cao Z W, Zeng G H 2015 Acta Opt. Sin. 35 0106006Google Scholar

    [50]

    Lin J, Lütkenhaus N 2020 Phys. Rev. Appl. 14 064030Google Scholar

    [51]

    Lodewyck J, Bloch M, Garcia-Patron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [52]

    Wang X Y, Liu J Q, Li X F, Li Y M 2015 IEEE J. Quantum Electron. 51 5200206Google Scholar

    [53]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [54]

    Du S N, Li Z Y, Liu W Y, Wang X Y, Li Y M 2018 J. Opt. Soc. Am. B 35 481Google Scholar

    [55]

    Wang X Y, Guo X B, Jia Y X, Zhang Y, Lu Z G, Liu J Q, Li Y M 2023 J. Lightwave Technol. 41 5518Google Scholar

    [56]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [57]

    刘建强, 王旭阳, 白增亮, 李永民 2016 物理学报 65 100303Google Scholar

    Liu J Q, Wang X Y, Bai Z L, Li Y M 2016 Acta Phys. Sin. 65 100303Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [3] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [4] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [5] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [6] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [7] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [8] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [9] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [10] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [11] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [12] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [13] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 曹鹤飞, 张若洵. 基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现. 物理学报, 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [17] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 翟泽辉, 李永明, 王少凯, 郭 娟, 张天才, 郜江瑞. 连续变量量子离物传态的实验研究. 物理学报, 2005, 54(6): 2710-2716. doi: 10.7498/aps.54.2710
计量
  • 文章访问数:  1685
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-06
  • 上网日期:  2024-01-04
  • 刊出日期:  2024-03-20

/

返回文章
返回