搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变量量子密钥分发系统中动态偏振控制研究

张光伟 白建东 颉琦 靳晶晶 张永梅 刘文元

引用本文:
Citation:

连续变量量子密钥分发系统中动态偏振控制研究

张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元

Research on dynamic polarization control in continuous variable quantum key distribution systems

Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan
PDF
HTML
导出引用
  • 连续变量量子密钥分发系统中, 本地光场和信号光场采用时分复用, 偏振复用方式通过长距离单模光纤传输. 外界复杂环境会使单模光纤产生双折射效应, 导致本地光场和信号光场的偏振态漂移, 严重影响接收端平衡零拍探测结果. 因此, 高效动态偏振控制单元是推动系统外场实用化进程的关键技术. 本文理论上证明了系统接收端仅考虑任意偏振消光比输出时, 偏振控制单元只需两个控制自由度即可. 在此基础上将贝叶斯参数估计方法有效融入混沌-猴群算法, 同时在现场可编程逻辑门阵列硬件上实现控制算法, 结合积分型光场探测器建立动态偏振控制单元, 仿真和实验结果表明单次偏振控制静态消光比达到30 dB以上的平均周期为400 µs. 为了应对偏振态连续变化情况, 将动态偏振控制单元集成到连续变量量子密钥分发系统, 实验测试了偏振态扰动速率在0—2 krad/s范围内系统仍然能够正常运转.
    In a commercial fiber-based quantum key distribution system, the local and signal optical fields are transmitted through long distance fibers by using time division multiplexing and polarization multiplexing. The state of polarization of the optical field is inevitably disturbed by random birefringence of the standard single-mode fiber caused by external complex environments. This drift of the state of polarization significantly affects the balanced homodyne detection results and the secret key rate. Therefore, the key technology of the dynamic polarization control unit is crucial for the system in a large-scale commercial application. We theoretically analyze and prove that the polarization control unit only needs the combination of two degrees of freedom when considering the result of an arbitrary polarization extinction ratio at the receiver of the system. To overcome the influence of polarization variations, we propose a chaotic monkey algorithm based on Bayesian parameter estimation method and implement intelligence algorithm on field programmable gate array (FPGA) hardware under pulsed light with an integral-type detector for the dynamic polarization control unit. The simulation results show that the optimal combination is four degrees of freedom and the optimal prior distribution is an exponential distribution among various distributions in the dynamic polarization control unit. According to the simulation results, the experimental results show that the achieved polarization extinction ratio is over 30 dB and the average time of polarization control is 400 μs for a single random polarization scrambling. By combining the dynamic polarization control unit with the system, we demonstrate the continuous variable quantum key distribution (CV-QKD) under a continuous polarization scrambling scope of 0-2 krad/s and verify its effectiveness. In addition, the methods presented will improve the performance of the system and expand the range of applications even under strong external disturbance.
      通信作者: 刘文元, liuweny@nuc.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12104419, 12104417, 12104418) 和山西省基础研究计划 (批准号: 20210302124689, 20210302124161, 20210302124025) 资助的课题.
      Corresponding author: Liu Wen-Yuan, liuweny@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104419, 12104417, 12104418) and the Basic Research Program of Shanxi Province, China (Grant Nos. 20210302124689, 20210302124161, 20210302124025).
    [1]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [2]

    Ren S Y, Wang Y, Su X L 2022 Sci. China Inform. Sci. 65 200502Google Scholar

    [3]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inform. Sci. 66 180507Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [6]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [7]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, Mclaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [8]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [9]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [10]

    刘建强, 王旭阳, 白增量, 李永民 2016 物理学报 65 100303Google Scholar

    Liu J Q, Wang X Y, Bai Z L, Li Y M 2016 Acta Phys. Sin. 65 100303Google Scholar

    [11]

    Huang D, Huang P, Li H S, Wang T, Zhou Y M, Zeng G H 2016 Opt. Lett. 41 3511Google Scholar

    [12]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [13]

    Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C, Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. Technol. 4 035006Google Scholar

    [14]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [15]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [16]

    刘金璐, 杨杰, 张涛, 樊矾, 黄伟, 徐兵杰 2021 物理学报 70 240303Google Scholar

    Liu J L, Yang J, Zhang T, Fan F, Huang W, Xu B J 2021 Acta Phys. Sin. 70 240303Google Scholar

    [17]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [18]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [19]

    Noé R, Heidrich H, Hoffmann D 1988 Opt. Lett. 13 527Google Scholar

    [20]

    Koch B, Hidayat A, Zhang H B, Mirvoda V, Lichtinger M, Sandel D, Noé R 2008 IEEE Photon. Technol. Lett. 20 961Google Scholar

    [21]

    李伟文, 章献民, 陈抗生, 邹英寅 2005 光子学报 34 820

    Li W W, Zhang X M, Chen K S, Zou Y Y 2005 Acta Photon. Sin. 34 820

    [22]

    刘尉悦, 曹蕾, 陈厦微, 张亮, 李扬, 曹原, 任继刚, 蔡文奇, 廖胜凯, 彭承志 2016 红外与毫米波学报 35 210Google Scholar

    Liu W Y, Cao L, Chen X W, Zhang L, Li Y, Cao Y, Ren J G, Cai W Q, Liao S K, Peng C Z 2016 J. Infrared Millim. Waves 35 210Google Scholar

    [23]

    李伟文, 金晓峰, 章献民, 陈抗生 2006 浙江大学学报:工学版 40 443

    Li W W, Jin X F, Zhang X M, Chen K S 2006 J. Zhejiang Univ. (Eng. Sci.) 40 443

    [24]

    Zhu J J, Zhang X G, Duan G Y, Wang Q G 2006 Semi. Photon. Tech. 12 217

    [25]

    尤阳, 漆云凤, 沈辉, 邹星星, 何兵, 周军 2020 光学学报 40 2314002Google Scholar

    You Y, Qi Y F, Shen H, Zou X X, He B, Zhou J 2020 Acta Opt. Sin. 40 2314002Google Scholar

    [26]

    张启业, 朱勇, 苏洋, 周华, 经继松 2013 光学学报 33 0506001Google Scholar

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 0506001Google Scholar

    [27]

    Xavier G B, Walenta N, Faria G V D, Temporão G P, Gisin N, Zbinden H, Weid J P V D 2009 New J. Phys. 11 045015Google Scholar

    [28]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

    [29]

    Li D D, Gao S, Li G C, Xue L, Wang L W, Lu C B, Xiang Y, Zhao Z Y, Yan L C, Chen Z Y, Yu G, Liu J H 2018 Opt. Express 26 22793Google Scholar

    [30]

    Ding Y Y, Chen H, Wang S, He D Y, Yin Z Q, Chen W, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [31]

    曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明 2022 物理学报 71 130306Google Scholar

    Cao R L, Peng Q X, Wang J D, Chen Y J, Huang Y F, Yu Y F, Wei Z J, Zhang Z M 2022 Acta Phys. Sin. 71 130306Google Scholar

    [32]

    周琦, 苏成志, 马万卓 2022 激光杂志 43 32

    Zhou Q, Su C Z, Ma W Z 2022 Laser J. 43 32

    [33]

    Muga N J, Ramos M F, Mantey S T, Silva N A, Pinto A N 2020 IET Optoelectron. 14 350Google Scholar

    [34]

    Mekhtiev E E, Gerasin I S, Rudavin N V, Duplinsky A V, Kurochkin Y V 2021 J. Phys. Conf. Ser. 2086 012092Google Scholar

    [35]

    Wang T, Huang P, Wang S Y, Zeng G H 2019 Opt. Express 27 26689Google Scholar

    [36]

    Zhou M S, Li Y Q, Xiang Z H, Swoboda G, Cen Z Z 2007 Tsinghua Sci. Technol. 12 546Google Scholar

    [37]

    Jin B T 2008 Int. J. Numer. Meth. Eng. 76 230Google Scholar

    [38]

    CappÉ O, Godsill S J, Moulines E 2007 Proc. IEEE 95 899Google Scholar

    [39]

    An M J 2012 Geophys. J. Int. 191 849Google Scholar

    [40]

    Fox E P 1998 Technometrics 40 155

    [41]

    Schönfeld P 1989 Statistical Papers 30 212Google Scholar

    [42]

    Toussaint U V 2011 Rev. Mod. Phys. 83 943Google Scholar

    [43]

    Barker A L, Brown D E, Martin W N 1995 Comput. Math. Appl. 30 55Google Scholar

    [44]

    Cohn S E 1997 J. Meteor. Soc. Jpn. 75 257Google Scholar

    [45]

    Zhuang L F, Pan F, Ding F 2012 Appl. Math. Model. 36 3454Google Scholar

    [46]

    Ying M S 2010 Artif. Intell. 174 162Google Scholar

    [47]

    Lamata L, Sanz M, Solano E 2019 Adv. Quantum Technol. 2 1900075Google Scholar

    [48]

    Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306Google Scholar

    [49]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G 2006 Chin. Phys. Lett. 23 1080Google Scholar

    [50]

    Haykin S 2005 IEEE J. Sel. Area. Comm. 23 201Google Scholar

    [51]

    Corsi F, Galtarossa A, Palmieri L 1998 J. Lightw. Technol. 16 1832Google Scholar

    [52]

    Galtarossa A, Schiano M, Someda C G, Daino B, Matera F, Zaninello R, Bergamin F 1991 Electron. Lett. 27 595Google Scholar

    [53]

    谢晓新, 徐森禄 1990 陕西师大学报(自然科学版) 18 82

    Xie X X, Xu S L 1990 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 18 82

    [54]

    Xu X P, Zhang D J 2018 Comput. Eng. Appl. 54 144

    [55]

    Zhao R Q, Tang W S 2008 J. Uncertain Syst. 2 165

    [56]

    Alfaro M E, Holder M T 2006 Annu. Rev. Ecol. Evol. Syst. 37 19Google Scholar

    [57]

    Dempster A P, Laird N M, Rubin D B 1977 J. R. Stat. Soc. Series B 39 1

    [58]

    Reimherr M, Meng X L, Nicolae D L 2021 J. R. Stat. Soc. Series B 83 413Google Scholar

    [59]

    张晓光, 席丽霞, 崔楠, 张虎, 肖晓晟, 唐先锋 2023 光纤通信系统中的偏振光学 (北京: 清华大学出版社) 第18—36页

    Zhang X G, Xi L X, Cui N, Zhang H, Xiao X S, Tang X F 2023 Polarization Optics in Optical Fiber Communication (Beijing: Tsinghua University Press) pp18–36

    [60]

    张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar

    Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar

    [61]

    Franceschetti G, Smith C P 1981 J. Opt. Soc. Am. 71 1487Google Scholar

    [62]

    Baptista M S 1998 Phys. Lett. A 240 50Google Scholar

    [63]

    安毓英, 曾晓东, 冯喆珺 2010 光电探测与信号处理 (北京: 科学出版社) 第172—180页

    An Y Y, Zeng X D, Feng Z J 2010 Photoelectric Detection and Signal Processing (Beijing: Science Press) pp172–180

  • 图 1  挤压型电控偏振控制器

    Fig. 1.  Extrusion type electronically polarization controller.

    图 2  调节挤压器延迟量偏振态的变化轨迹 (a) 固定${0^{{\circ }}}$挤压器, 调节${45^{{\circ }}}$挤压器相位延迟量; (b) 调节${0^{{\circ }}}$和${45^{{\circ }}}$挤压器相位延迟量

    Fig. 2.  Change trajectory of state of polarization when adjusting phase retardation of extruder: (a) Fixing ${0^{{\circ }}}$ extruder, adjusting phase retardation of the ${45^{{\circ }}}$ extruder; (b) adjusting phase retardation of the ${0^{{\circ }}}$ and ${45^{{\circ }}}$ extruders.

    图 3  贝叶斯-混沌猴群算法流程图

    Fig. 3.  Program flow diagram of Bayesian-chaotic monkey algorithm.

    图 4  先验分布类型和偏振自由度达到目标偏振态所需迭代次数

    Fig. 4.  Average number of iterations to achieve target state of polarization based on prior distribution and degrees of freedom of polarization.

    图 5  动态偏振控制单元示意图

    Fig. 5.  Schematic diagram of the dynamic polarization control unit.

    图 6  控制目标偏振态迭代次数统计分布

    Fig. 6.  Statistical distribution of iterations to achieve target of state of polarization.

    图 7  单次偏振控制过程中消光比与时间关系

    Fig. 7.  Observed polarization extinction ratio versus the time for a typical single random polarization control process.

    图 8  连续偏振扰动速率对系统关键参数影响 (a) 通道传输效率; (b) 额外噪声

    Fig. 8.  Influence of continuous polarization scrambling on key parameters of the system: (a) Channel transmittance; (b) excess noise.

  • [1]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [2]

    Ren S Y, Wang Y, Su X L 2022 Sci. China Inform. Sci. 65 200502Google Scholar

    [3]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inform. Sci. 66 180507Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [6]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [7]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, Mclaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [8]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [9]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [10]

    刘建强, 王旭阳, 白增量, 李永民 2016 物理学报 65 100303Google Scholar

    Liu J Q, Wang X Y, Bai Z L, Li Y M 2016 Acta Phys. Sin. 65 100303Google Scholar

    [11]

    Huang D, Huang P, Li H S, Wang T, Zhou Y M, Zeng G H 2016 Opt. Lett. 41 3511Google Scholar

    [12]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [13]

    Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C, Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. Technol. 4 035006Google Scholar

    [14]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [15]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [16]

    刘金璐, 杨杰, 张涛, 樊矾, 黄伟, 徐兵杰 2021 物理学报 70 240303Google Scholar

    Liu J L, Yang J, Zhang T, Fan F, Huang W, Xu B J 2021 Acta Phys. Sin. 70 240303Google Scholar

    [17]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [18]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [19]

    Noé R, Heidrich H, Hoffmann D 1988 Opt. Lett. 13 527Google Scholar

    [20]

    Koch B, Hidayat A, Zhang H B, Mirvoda V, Lichtinger M, Sandel D, Noé R 2008 IEEE Photon. Technol. Lett. 20 961Google Scholar

    [21]

    李伟文, 章献民, 陈抗生, 邹英寅 2005 光子学报 34 820

    Li W W, Zhang X M, Chen K S, Zou Y Y 2005 Acta Photon. Sin. 34 820

    [22]

    刘尉悦, 曹蕾, 陈厦微, 张亮, 李扬, 曹原, 任继刚, 蔡文奇, 廖胜凯, 彭承志 2016 红外与毫米波学报 35 210Google Scholar

    Liu W Y, Cao L, Chen X W, Zhang L, Li Y, Cao Y, Ren J G, Cai W Q, Liao S K, Peng C Z 2016 J. Infrared Millim. Waves 35 210Google Scholar

    [23]

    李伟文, 金晓峰, 章献民, 陈抗生 2006 浙江大学学报:工学版 40 443

    Li W W, Jin X F, Zhang X M, Chen K S 2006 J. Zhejiang Univ. (Eng. Sci.) 40 443

    [24]

    Zhu J J, Zhang X G, Duan G Y, Wang Q G 2006 Semi. Photon. Tech. 12 217

    [25]

    尤阳, 漆云凤, 沈辉, 邹星星, 何兵, 周军 2020 光学学报 40 2314002Google Scholar

    You Y, Qi Y F, Shen H, Zou X X, He B, Zhou J 2020 Acta Opt. Sin. 40 2314002Google Scholar

    [26]

    张启业, 朱勇, 苏洋, 周华, 经继松 2013 光学学报 33 0506001Google Scholar

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 0506001Google Scholar

    [27]

    Xavier G B, Walenta N, Faria G V D, Temporão G P, Gisin N, Zbinden H, Weid J P V D 2009 New J. Phys. 11 045015Google Scholar

    [28]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

    [29]

    Li D D, Gao S, Li G C, Xue L, Wang L W, Lu C B, Xiang Y, Zhao Z Y, Yan L C, Chen Z Y, Yu G, Liu J H 2018 Opt. Express 26 22793Google Scholar

    [30]

    Ding Y Y, Chen H, Wang S, He D Y, Yin Z Q, Chen W, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [31]

    曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明 2022 物理学报 71 130306Google Scholar

    Cao R L, Peng Q X, Wang J D, Chen Y J, Huang Y F, Yu Y F, Wei Z J, Zhang Z M 2022 Acta Phys. Sin. 71 130306Google Scholar

    [32]

    周琦, 苏成志, 马万卓 2022 激光杂志 43 32

    Zhou Q, Su C Z, Ma W Z 2022 Laser J. 43 32

    [33]

    Muga N J, Ramos M F, Mantey S T, Silva N A, Pinto A N 2020 IET Optoelectron. 14 350Google Scholar

    [34]

    Mekhtiev E E, Gerasin I S, Rudavin N V, Duplinsky A V, Kurochkin Y V 2021 J. Phys. Conf. Ser. 2086 012092Google Scholar

    [35]

    Wang T, Huang P, Wang S Y, Zeng G H 2019 Opt. Express 27 26689Google Scholar

    [36]

    Zhou M S, Li Y Q, Xiang Z H, Swoboda G, Cen Z Z 2007 Tsinghua Sci. Technol. 12 546Google Scholar

    [37]

    Jin B T 2008 Int. J. Numer. Meth. Eng. 76 230Google Scholar

    [38]

    CappÉ O, Godsill S J, Moulines E 2007 Proc. IEEE 95 899Google Scholar

    [39]

    An M J 2012 Geophys. J. Int. 191 849Google Scholar

    [40]

    Fox E P 1998 Technometrics 40 155

    [41]

    Schönfeld P 1989 Statistical Papers 30 212Google Scholar

    [42]

    Toussaint U V 2011 Rev. Mod. Phys. 83 943Google Scholar

    [43]

    Barker A L, Brown D E, Martin W N 1995 Comput. Math. Appl. 30 55Google Scholar

    [44]

    Cohn S E 1997 J. Meteor. Soc. Jpn. 75 257Google Scholar

    [45]

    Zhuang L F, Pan F, Ding F 2012 Appl. Math. Model. 36 3454Google Scholar

    [46]

    Ying M S 2010 Artif. Intell. 174 162Google Scholar

    [47]

    Lamata L, Sanz M, Solano E 2019 Adv. Quantum Technol. 2 1900075Google Scholar

    [48]

    Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306Google Scholar

    [49]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G 2006 Chin. Phys. Lett. 23 1080Google Scholar

    [50]

    Haykin S 2005 IEEE J. Sel. Area. Comm. 23 201Google Scholar

    [51]

    Corsi F, Galtarossa A, Palmieri L 1998 J. Lightw. Technol. 16 1832Google Scholar

    [52]

    Galtarossa A, Schiano M, Someda C G, Daino B, Matera F, Zaninello R, Bergamin F 1991 Electron. Lett. 27 595Google Scholar

    [53]

    谢晓新, 徐森禄 1990 陕西师大学报(自然科学版) 18 82

    Xie X X, Xu S L 1990 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 18 82

    [54]

    Xu X P, Zhang D J 2018 Comput. Eng. Appl. 54 144

    [55]

    Zhao R Q, Tang W S 2008 J. Uncertain Syst. 2 165

    [56]

    Alfaro M E, Holder M T 2006 Annu. Rev. Ecol. Evol. Syst. 37 19Google Scholar

    [57]

    Dempster A P, Laird N M, Rubin D B 1977 J. R. Stat. Soc. Series B 39 1

    [58]

    Reimherr M, Meng X L, Nicolae D L 2021 J. R. Stat. Soc. Series B 83 413Google Scholar

    [59]

    张晓光, 席丽霞, 崔楠, 张虎, 肖晓晟, 唐先锋 2023 光纤通信系统中的偏振光学 (北京: 清华大学出版社) 第18—36页

    Zhang X G, Xi L X, Cui N, Zhang H, Xiao X S, Tang X F 2023 Polarization Optics in Optical Fiber Communication (Beijing: Tsinghua University Press) pp18–36

    [60]

    张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar

    Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar

    [61]

    Franceschetti G, Smith C P 1981 J. Opt. Soc. Am. 71 1487Google Scholar

    [62]

    Baptista M S 1998 Phys. Lett. A 240 50Google Scholar

    [63]

    安毓英, 曾晓东, 冯喆珺 2010 光电探测与信号处理 (北京: 科学出版社) 第172—180页

    An Y Y, Zeng X D, Feng Z J 2010 Photoelectric Detection and Signal Processing (Beijing: Science Press) pp172–180

  • [1] 赵倩如, 王旭阳, 贾雁翔, 张云杰, 卢振国, 钱懿, 邹俊, 李永民. 基于硅基光电子芯片的低损耗动态偏振控制器. 物理学报, 2024, 73(2): 024205. doi: 10.7498/aps.73.20231214
    [2] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [3] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [4] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [5] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [6] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [7] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [8] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [9] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [10] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [11] 黄宇, 刘玉峰, 彭志敏, 丁艳军. 基于量子并行粒子群优化算法的分数阶混沌系统参数估计. 物理学报, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [12] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [13] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [14] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [15] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [16] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [17] 李丽香, 彭海朋, 杨义先, 王向东. 基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计. 物理学报, 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [18] 冯素娟, 尚 亮, 毛庆和. 利用偏振控制器连续调节光纤环镜的反射率. 物理学报, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
计量
  • 文章访问数:  1421
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2023-12-14
  • 上网日期:  2024-01-03
  • 刊出日期:  2024-03-20

/

返回文章
返回