搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现

曹正文 张爽浩 冯晓毅 赵光 柴庚 李东伟

引用本文:
Citation:

基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现

曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟

The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring

Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei
PDF
导出引用
  • 为了有效抵御窃听者对本振光的攻击,提高连续变量量子密钥分发(continuous-variable quantum key distribution,CVQKD)系统的安全性,提出了一种基于散粒噪声方差实时监测的CVQKD系统.该系统采用散粒噪声方差标定技术,在原有的CVQKD系统中加入散粒噪声方差实时监测模块,通过本振光强和散粒噪声方差的线性关系评估出实时的散粒噪声方差,再计算系统准确实时的密钥率来判断当前系统是否处于安全状态.实验上也表明了该系统能够有效抵御Eve对本振光的攻击,提高CVQKD系统的安全性.
    In the safety assessment of the actual CVQKD (continuous-variable quantum key distribution) system,the preparation measurement model is generally equivalent to the entanglement-based model,whose major drawback is that the shot noise variance is treated as a constant.As the attacks on the LO (local oscillator) from the Eve,the shot noise variance will change with LO.And in the process of safety analysis based on the shot noise variance calibration technology,there are loopholes in which the shot noise variance for calculating secret key rate is obtained by the linear relationship between the shot noise variance and the LO before distributing the quantum key.However,the shot noise variance is not accurate nor real-time.In the security analysis of system,all the noise parameters of the system are normalized to the shot noise variance.The Eve can reduce the shot noise variance by controlling the strength of LO,thus actual excess noise of system will increase.But legal communicating parties are still normalized based on previous larger shot noise variance,so that the excess noise of system is substantially underestimated.As a consequence,the Eve can obtain secret key information without attracting the attention of legal communicating parties by adopting some attacks, such as intercept-resend attack.Thus it is an essential factor for ensuring the system security to evaluate real-time shot noise variance accurately.In order to effectively resist the above mentioned attacks on the LO from the Eve,a scheme of CVQKD system based on real-time shot noise variance monitoring is presented to improve the security of CVQKD system.The shot noise variance calibration technology is adopted in this system.By adding the real-time shot noise variance monitoring modules to the primary CVQKD system,the real-time shot noise variance is assessed by the linear relationship between the shot noise variance and the LO.In the hardware system,independent clocks are adopted. Sampling in peak algorithm is applied to software system,and this effectively solves the problem that CVQKD system with LO clock source is at risk of shot noise variance calibration attack.The scheme prevents the hazards that the Eve changes previously calibrated linear relationship by regulating the pulse delay of the LO,and thus judges whether the system is safe through calculating the accurate and real-time secret key rate.The system can analyze the real-time security of quantum key distribution and display safety status of system.The experimental results show that this system can defend effectively the LO attacks from the Eve and improve the security performance of the CVQKD system.
      通信作者: 曹正文, caozhw@nwu.edu.cn
    • 基金项目: 陕西省科技厅自然科学基金(批准号:2013JM8036)和“十二五”“211工程”创新人才培养项目(批准号:YZZ15100)资助的课题.
      Corresponding author: Cao Zheng-Wen, caozhw@nwu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM8036) and the 211 Project of Innovative Talents Training in 12th Five-Year, China (Grant No. YZZ15100).
    [1]

    Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [3]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [4]

    Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297

    [5]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504

    [6]

    Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503

    [7]

    Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317

    [8]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504

    [9]

    Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010物理学报59 1473]

    [10]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312

    [11]

    Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303

    [12]

    Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305

    [13]

    Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014

    [14]

    Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305

    [15]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325

    [16]

    Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317

    [17]

    Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [18]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [19]

    Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313

    [20]

    Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [21]

    Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502

    [22]

    Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503

    [23]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905

    [24]

    Holevo A S 1998 IEEE Trans. Inf. Theory 44 269

  • [1]

    Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [3]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [4]

    Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297

    [5]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504

    [6]

    Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503

    [7]

    Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317

    [8]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504

    [9]

    Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010物理学报59 1473]

    [10]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312

    [11]

    Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303

    [12]

    Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305

    [13]

    Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014

    [14]

    Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305

    [15]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325

    [16]

    Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317

    [17]

    Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [18]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [19]

    Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313

    [20]

    Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [21]

    Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502

    [22]

    Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503

    [23]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905

    [24]

    Holevo A S 1998 IEEE Trans. Inf. Theory 44 269

  • [1] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [2] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [3] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [4] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [5] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [6] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [7] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声. 物理学报, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [9] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究. 物理学报, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [10] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究. 物理学报, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [11] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [12] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声. 物理学报, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [13] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱. 物理学报, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [15] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 物理学报, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [16] 张志勇, 王太宏. 用散粒噪声测量碳纳米管中Luttinger参数. 物理学报, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [17] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响. 物理学报, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [18] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [19] 朱主祥, 郑大昉, 刘有延. 一维介观系统的隧道电流零频散粒噪声谱密度. 物理学报, 1999, 48(2): 302-313. doi: 10.7498/aps.48.302
    [20] 陈進光. P-N结二极管中的散粒噪声与热噪声. 物理学报, 1965, 21(2): 383-389. doi: 10.7498/aps.21.383
计量
  • 文章访问数:  6184
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2016-11-02
  • 刊出日期:  2017-01-20

/

返回文章
返回